Monitoring and Analyzing Switch Operation

Contents

Overview ... B-3

Status and Counters Data B-4
 Menu Access To Status and Counters B-5
 General System Information B-6
 Switch Management Address Information B-7
 Module Information B-8
 Port Status .. B-10
 Viewing Port and Trunk Group Statistics and Flow Control Status B-11
 Viewing the Switch’s MAC Address Tables B-14
 Spanning Tree Protocol (MSTP) Information B-18
 Internet Group Management Protocol (IGMP) Status B-19
 VLAN Information B-20
 Web Browser Interface Status Information B-22

Traffic Mirroring .. B-23
 Terminology B-24
 Mirrored Traffic Destinations B-26
 Local Destinations B-26
 Remote Destinations B-26
 Mirrored Traffic Sources B-26
 Criteria for Selecting Traffic To Mirror B-27
 Mirrored Traffic Operation and Options B-27
 Mirroring Sessions B-27
 Configuration B-29
 Endpoint Switches and Intermediate Devices B-30
 Updating from a Legacy Mirroring Configuration B-30
 Using the Menu or Web Interface To Configure Local Mirroring .. B-31
 Menu and Web Interface Limits B-31
Monitoring and Analyzing Switch Operation
Contents

Configuration Steps ... B-32
CLI: Configuring Local and Remote Mirroring B-35
General Steps for Using the CLI To Configure Mirroring B-36
Quick Reference to Local Mirroring Set-Up B-38
Quick Reference to Remote Mirroring Set-Up B-39
1. Determine the Mirroring Session Identity and Destination .. B-41
2. Configure the Remote Mirroring Session on Destination Switch B-41
3. Configure the Mirroring Session on the Source Switch B-44
4. Configure Mirroring Sources B-47
 Traffic Selection Options B-47
 Mirroring Source Limits B-47
 Using Interface Identity and Direction of Movement
 To Select the Traffic To Mirror from a Source Switch B-48
 Using ACL Assignment and Traffic Direction
 To Select the Traffic To Mirror from a Source Switch B-51
Displaying the Mirroring Configuration B-56
 Displaying the Mirroring Configuration Summary B-56
 Displaying the Remote Endpoint Configuration B-58
 Displaying a Mirroring Session Configuration
 on a Source Switch .. B-59
 Viewing Mirroring in the Current Configuration File B-61
Mirroring Configuration Examples B-63
 Local Mirroring Destination B-63
 Remote Mirroring Destination Using a VLAN Interface
 and an ACL for Mirroring Criteria B-64
 Remote Mirroring Destination Using a Port Interface
 and Directional Mirroring Criteria B-67
Maximum Supported Frame Size B-69
 Enabling Jumbo Frames To Increase the Mirroring Path MTU B-69
 Effect of Downstream VLAN Tagging on
 Untagged, Mirrored Traffic B-70
Operating Notes .. B-70
Troubleshooting Mirroring B-72
Overview

The switches covered in this guide have several built-in tools for monitoring, analyzing, and troubleshooting switch and network operation:

- **Status:** Includes options for displaying general switch information, management address data, port status, port and trunk group statistics, MAC addresses detected on each port or VLAN, and STP, IGMP, and VLAN data (page B-4).

- **Counters:** Display details of traffic volume on individual ports (page B-11).

- **Event Log:** Lists switch operating events (“Using the Event Log To Identify Problem Sources” on page C-26).

- **Alert Log:** Lists network occurrences detected by the switch—in the Status | Overview screen of the web browser interface (page 5-20).

- **Configurable trap receivers:** Uses SNMP to enable management stations on your network to receive SNMP traps from the switch. (Refer to “SNMPv1 and SNMPv2c Trap Features” on page 14-19.)

- **Port monitoring (mirroring):** Copy all traffic from the specified ports to a designated monitoring port (page B-23).

Note

Link test and ping test—analysis tools in troubleshooting situations—are described in Appendix C, “Troubleshooting”. Refer to “Diagnostic Tools” on page C-44.
Status and Counters Data

This section describes the status and counters screens available through the switch console interface and/or the web browser interface.

Note

You can access all console screens from the web browser interface via Telnet to the console. Telnet access to the switch is available in the Device View window under the **Configuration** tab.

<table>
<thead>
<tr>
<th>Status or Counters Type</th>
<th>Interface</th>
<th>Purpose</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Access to Status and Counters</td>
<td>Menu</td>
<td>Access menu interface for status and counter data.</td>
<td>B-5</td>
</tr>
<tr>
<td>General System Information</td>
<td>Menu, CLI</td>
<td>Lists switch-level operating information.</td>
<td>B-6</td>
</tr>
<tr>
<td>Management Address Information</td>
<td>Menu, CLI</td>
<td>Lists the MAC address, IP address, and IPX network number for each VLAN or, if no VLANs are configured, for the switch.</td>
<td>B-7</td>
</tr>
<tr>
<td>Module Information</td>
<td>Menu, CLI</td>
<td>Lists the module type and description for each slot in which a module is installed.</td>
<td>B-8</td>
</tr>
<tr>
<td>Port Status</td>
<td>Menu, CLI, Web</td>
<td>Displays the operational status of each port.</td>
<td>B-10</td>
</tr>
<tr>
<td>Port and Trunk Statistics and Flow Control Status</td>
<td>Menu, CLI, Web</td>
<td>Summarizes port activity and lists per-port flow control status.</td>
<td>B-11</td>
</tr>
<tr>
<td>VLAN Address Table</td>
<td>Menu, CLI</td>
<td>Lists the MAC addresses of nodes the switch has detected on specific VLANs, with the corresponding switch port.</td>
<td>B-14</td>
</tr>
<tr>
<td>Port Address Table</td>
<td>Menu, CLI</td>
<td>Lists the MAC addresses that the switch has learned from the selected port.</td>
<td>B-14</td>
</tr>
<tr>
<td>STP Information</td>
<td>Menu, CLI</td>
<td>Lists Spanning Tree Protocol data for the switch and for individual ports. If VLANs are configured, reports on a per-VLAN basis.</td>
<td>B-18</td>
</tr>
<tr>
<td>IGMP Status</td>
<td>Menu, CLI</td>
<td>Lists IGMP groups, reports, queries, and port on which querier is located.</td>
<td>B-19</td>
</tr>
<tr>
<td>VLAN Information</td>
<td>Menu, CLI</td>
<td>For each VLAN configured in the switch, lists 802.1Q VLAN ID and up/down status.</td>
<td>B-20</td>
</tr>
<tr>
<td>Port Status Overview and Port Counters</td>
<td>Web</td>
<td>Shows port utilization and counters, and the Alert Log.</td>
<td>B-22</td>
</tr>
</tbody>
</table>
Menu Access To Status and Counters

Beginning at the Main Menu, display the Status and Counters menu by selecting:

1. Status and Counters

```
/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<table>
<thead>
<tr>
<th>CONSOLE - MANAGER NODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status and Counters Menu</td>
</tr>
<tr>
<td>1. General System Information</td>
</tr>
<tr>
<td>2. Switch Management Address Information</td>
</tr>
<tr>
<td>3. Module Information</td>
</tr>
<tr>
<td>4. Port Status</td>
</tr>
<tr>
<td>5. Port Counters</td>
</tr>
<tr>
<td>6. VLAN Address Table</td>
</tr>
<tr>
<td>7. Port Address Table</td>
</tr>
<tr>
<td>8. Spanning Tree Information</td>
</tr>
<tr>
<td>9. Return to Main Menu...</td>
</tr>
</tbody>
</table>

*Displays switch management information including software versions.*
To select menu item, press item number, or highlight item and press <Enter>.
```

Figure B-1. The Status and Counters Menu

Each of the above menu items accesses the read-only screens described on the following pages. Refer to the online help for a description of the entries displayed in these screens.
General System Information

Menu Access

From the console Main Menu, select:

1. Status and Counters
 1. General System Information

![General System Information Screen]

Figure B-2. Example of General Switch Information

This screen dynamically indicates how individual switch resources are being used. Refer to the online Help for details.

CLI Access

Syntax: show system-information
Switch Management Address Information

Menu Access
From the Main Menu, select:

1. Status and Counters …
2. Switch Management Address Information

Status and Counters - Management Address Information

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>MAC Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN-1</td>
<td>00:1e:0020</td>
<td>10.1.1.101</td>
</tr>
<tr>
<td>VLAN-2</td>
<td>00:1e:0050</td>
<td>Disabled</td>
</tr>
<tr>
<td>VLAN-3</td>
<td>00:1e:0090</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Actions: Back Help

Figure B-3. Example of Management Address Information with VLANs Configured

This screen displays addresses that are important for management of the switch. If multiple VLANs are not configured, this screen displays a single IP address for the entire switch. Refer to the online Help for details.

Note

As shown in figure B-3, all VLANs on the switches use the same MAC address. (This includes both the statically configured VLANs and any dynamic VLANs existing on the switch as a result of GVRP operation.)

Also, the switches covered in this guide use a multiple forwarding database. When using multiple VLANs and connecting a switch to a device that uses a single forwarding database, such as a Switch 4000M, there are cabling and tagged port VLAN requirements. For more on this topic, refer to the section titled “Multiple VLAN Considerations” in the “Static Virtual LANs (VLANs) chapter of the Advanced Traffic Management Guide for your switch.

CLI Access

Syntax: show management
Module Information

Use this feature to determine which slots have modules installed and which type(s) of modules are installed.

Menu: Displaying Port Status

From the Main Menu, select:

1. Status and Counters …
2. Module Information

<table>
<thead>
<tr>
<th>Slot</th>
<th>Module Description</th>
<th>Serial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ProCurve J8702A XL 24 port Gig-T POE module SG111sz235</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ProCurve J8702A XL 24 port Gig-T POE module SG111sz236</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>ProCurve J8702 XL 4 port 10G X2 module S5111sz237</td>
<td></td>
</tr>
</tbody>
</table>

Actions: Back Help

Return to previous screen
Use up/down arrow keys to scroll to other entries, left/right arrow keys to change action selection, and <Enter> to execute action.

Figure B-4. Example of Module Information in the Menu Interface
CLI Access

Syntax:

```
show modules
```

```
ProCurve(config)# show modules
Status and Counters - Module Information

Management Module: J8627A      Serial Number: SG111SZ234

Slot  Module Description                       Serial Number
----- ---------------------------------------- ------------
A     ProCurve J8702A XL 24 port Gig-T POE     SG111SZ345
B     ProCurve J8705A XL 20 port + 4 mGBIC     SG111SX466
C     ProCurve J8702A XL 24 port Gig-T POE     SG123DX543
```

Figure B-5. Example of Module Information including the Management Module
Monitoring and Analyzing Switch Operation
Status and Counters Data

Port Status

The web browser interface and the console interface show the same port status data.

Menu: Displaying Port Status

From the Main Menu, select:

1. Status and Counters …
2. Port Status

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Intrusion</th>
<th>Status</th>
<th>Mode</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>off</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Up</td>
<td>1000Fx</td>
</tr>
<tr>
<td>E2</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>1000Fx</td>
</tr>
<tr>
<td>E3</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>1000Fx</td>
</tr>
<tr>
<td>E4</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>1000Fx</td>
</tr>
<tr>
<td>E5</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>1000Fx</td>
</tr>
<tr>
<td>E6</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>1000Fx</td>
</tr>
<tr>
<td>E7</td>
<td>10/100TX</td>
<td>No</td>
<td>Yes</td>
<td>Down</td>
<td>1000Fx</td>
</tr>
</tbody>
</table>

Figure B-6. Example of Port Status on the Menu Interface

CLI Access

Syntax: show interfaces brief

Web Access

1. Click on the Status tab.
2. Click on [Port Status].
Viewing Port and Trunk Group Statistics and Flow Control Status

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>viewing port and trunk statistics for all ports, and flow control status</td>
<td>n/a</td>
<td>page B-12</td>
<td>page B-13</td>
<td>page B-13</td>
</tr>
<tr>
<td>viewing a detailed summary for a particular port or trunk</td>
<td>n/a</td>
<td>page B-12</td>
<td>page B-13</td>
<td>page B-13</td>
</tr>
<tr>
<td>resetting counters</td>
<td>n/a</td>
<td>page B-12</td>
<td>page B-13</td>
<td>page B-13</td>
</tr>
</tbody>
</table>

These features enable you to determine the traffic patterns for each port since the last reboot or reset of the switch. You can display:

- A general report of traffic on all LAN ports and trunk groups in the switch, along with the per-port flow control status (On or Off).
- A detailed summary of traffic on a selected port or trunk group.

You can also reset the counters for a specific port.

The menu interface and the web browser interface provide a dynamic display of counters summarizing the traffic on each port. The CLI lets you see a static “snapshot” of port or trunk group statistics at a particular moment.

As mentioned above, rebooting or resetting the switch resets the counters to zero. You can also reset the counters to zero for the current session. This is useful for troubleshooting. Refer to the “Note On Reset”, below.

Note on Reset

The Reset action resets the counter display to zero for the current session, but does not affect the cumulative values in the actual hardware counters. (In compliance with the SNMP standard, the values in the hardware counters are not reset to zero unless you reboot the switch.) Thus, using the Reset action resets the displayed counters to zero for the current session only. Exiting from the console session and starting a new session restores the counter displays to the accumulated values in the hardware counters.
Monitoring and Analyzing Switch Operation

Status and Counters Data

Menu Access to Port and Trunk Statistics

To access this screen from the Main Menu, select:

1. Status and Counters …

4. Port Counters

Figure B-7. Example of Port Counters on the Menu Interface

To view details about the traffic on a particular port, use the [v] key to highlight that port number, then select Show Details. For example, selecting port A2 displays a screen similar to figure B-8, below.

Figure B-8. Example of the Display for Show details on a Selected Port

This screen also includes the Reset action for the current session. (Refer to the “Note on Reset” on page B-11.)
CLI Access To Port and Trunk Group Statistics

To Display the Port Counter Summary Report.

Syntax: show interfaces

This command provides an overview of port activity for all ports on the switch.

To Display a Detailed Traffic Summary for Specific Ports.

Syntax: show interfaces < port-list >

This command provides traffic details for the port(s) you specify.

To Reset the Port Counters for a Specific Port.

Syntax: clear statistics < port-list >

This command resets the counters for the specified ports to zero for the current session. (See the “Note on Reset” on page B-11.)

Web Browser Access To View Port and Trunk Group Statistics

1. Click on the **Status** tab.
2. Click on **Port Counters**.
3. To refresh the counters for a specific port, click anywhere in the row for that port, then click on **Refresh**.

Note

To reset the port counters to zero, you must reboot the switch.
Monitoring and Analyzing Switch Operation
Status and Counters Data

Viewing the Switch’s MAC Address Tables

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>viewing MAC addresses on all ports on a specific VLAN</td>
<td>n/a</td>
<td>page B-14</td>
<td>page B-17</td>
<td>—</td>
</tr>
<tr>
<td>viewing MAC addresses on a specific port</td>
<td>n/a</td>
<td>page B-16</td>
<td>page B-17</td>
<td>—</td>
</tr>
<tr>
<td>searching for a MAC address</td>
<td>n/a</td>
<td>page B-16</td>
<td>page B-17</td>
<td>—</td>
</tr>
</tbody>
</table>

These features help you to view:

- The MAC addresses that the switch has learned from network devices attached to the switch
- The port on which each MAC address was learned

Menu Access to the MAC Address Views and Searches

Per-VLAN MAC-Address Viewing and Searching. This feature lets you determine which switch port on a selected VLAN is being used to communicate with a specific device on the network. The per-VLAN listing includes:

- The MAC addresses that the switch has learned from network devices attached to the switch
- The port on which each MAC address was learned

1. From the Main Menu, select:

 1. Status and Counters

 5. VLAN Address Table

2. The switch then prompts you to select a VLAN.

```
Select VLAN : DEFAULT_VLAN
```

3. Use the Space bar to select the VLAN you want, then press [Enter]. The switch then displays the MAC address table for that VLAN:
Monitoring and Analyzing Switch Operation
Status and Counters Data

Finding the Port Connection for a Specific Device on a VLAN. This feature uses a device's MAC address that you enter to identify the port used by that device.

1. Proceeding from figure B-9, press [S] (for Search), to display the following prompt:

 Enter MAC address: _

2. Type the MAC address you want to locate and press [Enter]. The address and port number are highlighted if found. If the switch does not find the MAC address on the currently selected VLAN, it leaves the MAC address listing empty.

3. Press [P] (for Prev page) to return to the full address table listing.
Monitoring and Analyzing Switch Operation
Status and Counters Data

Port-Level MAC Address Viewing and Searching. This feature displays and searches for MAC addresses on the specified port instead of for all ports on the switch.

1. From the Main Menu, select:
 1. Status and Counters
 7. Port Address Table

 ![Figure B-11. Listing MAC Addresses for a Specific Port](image)

2. Use the Space bar to select the port you want to list or search for MAC addresses, then press [Enter] to list the MAC addresses detected on that port.

 Stack is supported on the 3500yl and 6200yl switches.

Determining Whether a Specific Device Is Connected to the Selected Port. Proceeding from step 2, above:

1. Press [S] (for Search), to display the following prompt:

 Enter MAC address: _

2. Type the MAC address you want to locate and press [Enter]. The address is highlighted if found. If the switch does not find the address, it leaves the MAC address listing empty.

3. Press [P] (for Prev page) to return to the previous per-port listing.
Monitoring and Analyzing Switch Operation
Status and Counters Data

CLI Access for MAC Address Views and Searches

Syntax:
```
show mac-address
[vlan <vlan-id>]
[<port-list>]
[<mac-addr>]
```

To List All Learned MAC Addresses on the Switch, with The Port Number on Which Each MAC Address Was Learned.

ProCurve> show mac-address

To List All Learned MAC Addresses on one or more ports, with Their Corresponding Port Numbers. For example, to list the learned MAC address on ports A1 through A4 and port A6:

ProCurve> show mac-address a1-a4,a6

To List All Learned MAC Addresses on a VLAN, with Their Port Numbers. This command lists the MAC addresses associated with the ports for a given VLAN. For example:

ProCurve> show mac-address vlan 100

Note

The switches covered in this guide operate with a multiple forwarding database architecture.

To Find the Port On Which the Switch Learned a Specific MAC Address. For example, to find the port on which the switch learns a MAC address of 080009-21ae84:

```
ProCurve# show mac-address 080009-21ae84
Status and Counters - Address Table - 080009-21ae84
MAC Address : 080009-21ae84
Located on Port : A2
```
Spanning Tree Protocol (MSTP) Information

CLI Access to MSTP Data

This option lists the MSTP configuration, root data, and per-port data (cost, priority, state, and designated bridge).

Syntax: show spanning-tree

This command displays the switch’s global and regional spanning-tree status, plus the per-port spanning-tree operation at the regional level. Note that values for the following parameters appear only for ports connected to active devices: Designated Bridge, Hello Time, PtP, and Edge.

```
Switch#show spanning-tree
Multiple Spanning Tree (MSTP) Information
STP Enabled : Yes
Force Version : MSTP-operation
IST Hopped VLANs : 1.66
Switch MAC Address : 000c.ea-5e2000
Switch Priority : 32768
Max Age : 20
Max Hops : 20
Forward Delay : 15
Topology Change Count : 0
Time Since Last Change : 2 hours
CST Root MAC Address : 000c.2d-473671
CST Root Priority : 0
CST Root Path Cost : 4096000
CST Root Port : A1
IST Regional Root MAC Address : 000c.ea-02a300
IST Regional Root Priority : 12768
IST Regional Root Path Cost : 208300
IST Remaining Hops : 19

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Cost</th>
<th>Priority</th>
<th>State</th>
<th>Designated Bridge</th>
<th>Hello Time</th>
<th>PtP</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Forwarding</td>
<td>000883-028300 3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A2</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Blocking</td>
<td>000883-028300 9</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A3</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Forwarding</td>
<td>000883-02a700 2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>A4</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>10/100TX</td>
<td>Auto</td>
<td>128</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure B-12. Output from show spanning-tree Command
Internet Group Management Protocol (IGMP) Status

The switch uses the CLI to display the following IGMP status on a per-VLAN basis:

<table>
<thead>
<tr>
<th>Show Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp</td>
<td>Global command listing IGMP status for all VLANs configured in the switch:</td>
</tr>
<tr>
<td></td>
<td>• VLAN ID (VID) and name</td>
</tr>
<tr>
<td></td>
<td>• Active group addresses per VLAN</td>
</tr>
<tr>
<td></td>
<td>• Number of report and query packets per group</td>
</tr>
<tr>
<td></td>
<td>• Querier access port per VLAN</td>
</tr>
<tr>
<td>show ip igmp <vlan-id></td>
<td>Per-VLAN command listing above IGMP status for specified VLAN (VID)</td>
</tr>
<tr>
<td>show ip igmp group <ip-addr></td>
<td>Lists the ports currently participating in the specified group, with port type, Access type, Age Timer data and Leave Timer data.</td>
</tr>
</tbody>
</table>

For example, suppose that `show ip igmp` listed an IGMP group address of 224.0.1.22. You could get additional data on that group by executing the following:

```
ProCurve> show ip igmp group 224.0.1.22
IGMP ports for group 224.0.1.22

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Access</th>
<th>Age Timer</th>
<th>Leave Timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10/100TX</td>
<td>host</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Figure B-13. Example of IGMP Group Data
VLAN Information

The switch uses the CLI to display the following VLAN status:

<table>
<thead>
<tr>
<th>Show Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan</td>
<td>Lists:
• Maximum number of VLANs to support
• Existing VLANs
• Status (static or dynamic)
• Primary VLAN</td>
</tr>
<tr>
<td>show vlan <vlan-id></td>
<td>For the specified VLAN, lists:
• Name, VID, and status (static/dynamic)
• Per-Port mode (tagged, untagged, forbid, no/auto)
• "Unknown VLAN" setting (Learn, Block, Disable)
• Port status (up/down)</td>
</tr>
</tbody>
</table>

For example, suppose that your switch has the following VLANs:

Ports VLAN
- A1 - A12 DEFAULT_VLAN 1
- A1, A2 VLAN-33 33
- A3, A4 VLAN-44 44

The next three figures show how you could list data on the above VLANs.

Listing the VLAN ID (VID) and Status for ALL VLANs in the Switch.

```plaintext
ProCurve> show vlan  
Status and Counters - VLAN Information  
VLAN support : Yes  
Maximum VLANs to support : 9  
Primary VLAN: DEFAULT_VLAN  
  802.1Q VLAN ID Name          Status  
  --------------------------  ------- 
  1   DEFAULT_VLAN           Static  
  33  VLAN-33                Static  
  44  VLAN-44                Static  
```

Figure B-14. Example of VLAN Listing for the Entire Switch
Monitoring and Analyzing Switch Operation

Status and Counters Data

Listing the VLAN ID (VID) and Status for Specific Ports.

```
ProCurve> show vlan ports A1-A2
Status and Counters - VLAN Information - for ports A1,A2
802.1Q VLAN ID Name       Status
-----------------------   ----------
  1                      DEFAULT_VLAN  Static
  33                     VLAN-33      Static
```

Figure B-15. Example of VLAN Listing for Specific Ports

Listing Individual VLAN Status.

```
ProCurve> show vlan 1
Status and Counters - VLAN Information - Ports - VLAN 1
802.1Q VLAN ID : 1
Name : DEFAULT_VLAN
Status : Static

Port Information Mode          Unknown VLAN Status
-----------------------   ------------------------
A1                      Untagged Learn     Up
A2                      Tagged         Learn  Up
A3                      Untagged Learn     Up
A4                      Untagged Learn     Down
A5                      Untagged Learn     Down
.                      .                      .
.                      .                      .
.                      .                      .
```

Figure B-16. Example of Port Listing for an Individual VLAN

Because ports A1 and A2 are not members of VLAN-44, it does not appear in this listing.
Monitoring and Analyzing Switch Operation
Status and Counters Data

Web Browser Interface Status Information

The “home” screen for the web browser interface is the Status Overview screen, as shown below. As the title implies, it provides an overview of the status of the switch, including summary graphs indicating the network utilization on each of the switch ports, symbolic port status indicators, and the Alert Log, which informs you of any problems that may have occurred on the switch.

For more information on this screen, refer to the chapter titled “Using the ProCurve Web Browser Interface”.

![Figure B-17. Example of a Web Browser Interface Status Overview Screen](image-url)
Traffic Mirroring

Beginning with software release K.12.xx, traffic mirroring (Intelligent Mirroring) enables copying of network traffic from a network interface to a local or remote exit port where a host such as a traffic analyzer or intrusion detection system (IDS) is connected. This feature enables inspection of the traffic flowing on specific interfaces and can help in analyzing and debugging problems resulting from a misbehaving network or an individual client. This operation makes it easier to diagnose a network problem from a centralized location in a topology spread across a campus.

Using the CLI, you can make full use of the switch's local and remote mirroring capabilities. Using the Menu interface, you can configure only local mirroring for either a single VLAN or a list composed of ports and/or static trunks.

Mirrored frames exceeding the allowed maximum transmission unit (MTU) size will be dropped. Also, the switch applies a 54-byte IPv4 header to mirrored frames. For more on these topics, including the jumbo and non-jumbo frame size limits, refer to “Maximum Supported Frame Size” on page B-69.

Intelligent Mirroring supports destinations on the local (source) switch and one or more remote switches, allowing traffic from a given mirroring session on a source switch to be sent to either a host on the same switch or bridged or routed to a host on another switch previously configured as the destination for that session.

- A switch can be configured as the destination for:
 - 32 remote mirroring sessions originating on other ProCurve switches running software release K.12.xx. This allows simultaneous mirroring sessions configured on multiple source switches to be directed to one or more exit ports on a given exit switch previously configured to support those sessions.
Monitoring and Analyzing Switch Operation

Traffic Mirroring

- 4 local mirroring sessions originating on the same switch as the mirrored traffic

- A switch can be the originator (source) of four mirroring sessions, with each session mirroring traffic associated with a list composed of ports and/or static trunks, a mesh, or a VLAN interface.

- Options for mirroring criteria include:
 - Direction-Based mirroring for selecting traffic that is either entering or leaving the switch. In cases where you want to monitor traffic in only one direction, this improves utilization by reducing the amount of traffic sent to the monitoring destination.
 - Mirroring of all traffic entering or leaving the switch on the selected interface(s).
 - Optional ACL (Access Control List) criteria to enable selective mirroring of individual IP traffic types entering the switch, including IP and specific source and/or destination criteria. This enables you to limit a given mirroring session to specific inbound traffic on a given interface (instead of all inbound traffic on the interface).

Terminology

Destination: For a given, local mirroring session on a switch, this is the exit port configured on that switch. For a given, remote mirroring session, this is the remote switch supporting the exit port you want to use. The destination for a given remote mirroring session should always be configured before the source is configured. (Refer to “Mirrored Traffic Destinations” on page B-26.)

Directional-Based Mirroring: On a given interface, using the direction of traffic movement (entering or leaving the switch, or both) as criteria for selecting which traffic to mirror.

Entry Port: On a remote mirroring destination switch, the port through which mirrored traffic is received from remote sources. (Does not apply to local mirroring.)

Exit Port: On the exit switch, the port to which a traffic analyzer or IDS is connected to receive mirrored traffic. For local mirroring, an exit port can be any available port to which a traffic analyzer or IDS is connected. For remote mirroring, the entry port and the exit port on the destination switch for a given session must belong to the same VLAN.
Exit Switch: The switch providing the (destination) exit port for mirrored traffic. Depending on how mirroring is configured, this can be either the mirroring source switch or a remote exit switch. See also Local Exit Port, Remote Exit Switch, and Remote Exit Port.

Host: Used in this chapter to refer collectively to a traffic analyzer or intrusion detection system (IDS).

IDS: Intrusion Detection System.

Local Exit Port: A port configured on a mirroring source switch as the port through which traffic from a specific local mirroring session leaves the switch. A traffic analyzer or IDS should be connected to this port. Up to four local mirroring sessions can be assigned to either the same local exit port or up to four different exit ports. (The exit switch also supports 32 remote mirroring session assignments, regardless of how many exit ports are used.) For local mirroring, the exit port can be any port on the switch that is not configured as a mirroring source. See also Local Exit Port.

Local Mirroring: The mirroring exit port and the mirroring source interface are on the same switch.

Mirroring Source Switch: A switch configured to mirroring inbound and/or outbound traffic to a destination on the same (local) switch or to a destination on a remote switch. This is the switch on which mirrored traffic originates.

Remote Exit Port: A port configured on a remote exit switch as the port through which traffic from a specific remote mirroring session leaves the switch. A traffic analyzer or IDS should be connected to this port. Up to 32 mirroring sessions can be assigned to the same remote exit port. (The exit switch supports a total of 32 remote mirroring session assignments, regardless of how many exit ports are used.) The mirrored traffic entry port for a given session and the exit port for that session must belong to the same VLAN. See also Remote Exit Switch and Exit Switch.

Caution

A mirroring exit port should be connected only to a network analyzer, IDS, or other network edge device that has no connection to other network resources. Allowing a mirroring exit port connection to a network can result in serious network performance problems, and is strongly discouraged by ProCurve Networking.

Remote Exit Switch: The destination switch for mirrored traffic when the source and destination of mirrored traffic are on different switches. Also termed the Remote Destination Switch.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Remote Mirroring: The mirroring exit port and the mirroring source interface are on different switches. In this case, IPv4 encapsulation is used to send the mirrored traffic from the source switch to the destination switch.

Source Switch: See *Mirroring Source Switch*.

Mirrored Traffic Destinations

Local Destinations

A local mirrored traffic destination is a port on the same switch as the source of the traffic being mirrored.

Remote Destinations

A *remote* mirrored traffic destination is a ProCurve switch configured to operate as the exit switch for mirrored traffic sessions originating on other ProCurve switches. As of January, 2007, switches capable of this operation include the following ProCurve switches:

- 3500yl
- 5400zl
- 6200yl

Caution

Configuring a mirroring source switch with the destination and traffic selection criteria for a given mirroring session causes the switch to immediately begin mirroring traffic to that destination. In the case of remote mirroring, which uses IPv4 encapsulation, if the intended exit switch is not already configured as the destination for that session, its performance may be adversely affected by the stream of mirrored traffic. For this reason, ProCurve strongly recommends that you configure the exit switch for a remote mirroring session before configuring the source switch for that same session.

Mirrored Traffic Sources

You can designate mirroring for traffic entering or leaving the switch on these interfaces:

- **ports and static trunks:** Provides the flexibility for mirroring on individual ports, groups of ports, and/or static port trunks.
- **meshed ports:** Enables traffic mirroring on all ports configured for meshing on the switch.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

- **static VLANs**: Supports traffic mirroring on static VLANs configured on the switch. This option enables easy mirroring of traffic from all ports on a VLAN. It automatically adjusts mirroring to include traffic from newly added ports, and to exclude traffic from ports removed from the VLAN.

Criteria for Selecting Traffic To Mirror

On the traffic sources listed above, you can use the following criteria to select traffic to mirror:
- direction of traffic movement (entering or leaving the switch, or both)
- type of IP traffic entering the switch, as defined by an ACL (Access Control List)

Mirrored Traffic Operation and Options

Switches running software release K.12.xx or greater support the following:
- four mirroring destinations configured to correspond to local mirroring source sessions
- 32 mirroring destinations configured to correspond to remote mirroring source sessions
- four local or remote mirroring source sessions

Mirroring Sessions

A mirroring source can be a port or static-trunk list, a mesh, or a VLAN. A mirroring source and a mirroring destination comprise a given mirroring session. For any session, the destination must be a single (exit) port. (It cannot be a trunk, VLAN, or mesh.) Multiple mirroring sessions can be mapped to the same exit port, which provides flexibility in distributing hosts such as traffic analyzers or an IDS. On the mirroring destination switch, the port through which the mirrored traffic for a given session enters the switch and the exit port for that same session must belong to the same VLAN. (Refer to “2. Configure the Remote Mirroring Session on Destination Switch” on page B-41.)

Each of the four mirroring sessions supported at a mirroring source can have either the same or a different destination. Destination options include an exit port on the source (local) switch and/or on one remote ProCurve switch configured to support remote mirroring. This offers the following benefits:
Mirrored traffic belonging to each session can be directed to the same destination or to different destinations.

You can reduce the risk of oversubscribing a single exit port by directing traffic from different session sources to different exit ports.

You can segregate traffic by type, direction, or source.

A given switch can operate as both a source and a destination for mirroring sessions.
Configuration

Table B-1 lists the traffic mirroring configuration support available through the CLI, Menu Interface, and SNMP methods.

Table B-1. Traffic Mirroring Configuration Options

<table>
<thead>
<tr>
<th>Interface</th>
<th>Monitor</th>
<th>Traffic Direction</th>
<th>CLI Config</th>
<th>Menu and Web I/F Config†</th>
<th>SNMP Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>all traffic</td>
<td></td>
<td>inbound only, outbound only, or both directions</td>
<td>inbound and outbound combined</td>
<td>inbound only, outbound only, or both directions</td>
</tr>
<tr>
<td></td>
<td>ACL-selected (IP) traffic</td>
<td>Inbound only</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Port(s)</td>
<td>all traffic</td>
<td></td>
<td>inbound only, outbound only, or both directions</td>
<td>inbound and outbound combined</td>
<td>inbound only, outbound only, or both directions</td>
</tr>
<tr>
<td>Trunk(s)</td>
<td>ACL-selected (IP) traffic</td>
<td>Inbound only</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Mesh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Configures only session 1, and only for local mirroring.

Note

Using the CLI, you can access all mirroring capabilities on the switch. Using the Menu or Web interfaces, you can configure and display only session 1 and only as a local mirroring session for traffic in both directions on the specified interface. If session 1 has been configured in the CLI for local mirroring for inbound-only or outbound-only traffic, then using the Menu or Web interface to change the session 1 configuration *automatically* reconfigures the session to monitor both inbound and outbound traffic on the interface. (If session 1 has been configured in the CLI with an ACL or as a remote mirroring session, then the Menu and Web interfaces cannot be used to configure a mirroring session.) The CLI can configure sessions 1 - 4 for local or remote mirroring in any combination, and can be used to override a Menu or Web interface configuration of session 1. Using SNMP allows the same capability and effect as the CLI except that SNMP cannot be used to configure any ACL mirroring. (SNMP can overwrite an existing configuration for any session.)
Monitoring and Analyzing Switch Operation

Traffic Mirroring

Endpoint Switches and Intermediate Devices

The endpoint switches used for remote mirroring source and remote mirroring exit functions must be ProCurve switches that support the mirroring functions described in this chapter. However, because remote mirroring on your ProCurve switch uses IPv4 encapsulation of mirrored traffic to remote destination switches, the intermediate switches and routers in a layer 2/3 domain can be from any vendor supporting IPv4.

Notes

The exit interface for a mirroring destination must be an individual port.

The switch mirrors traffic on static trunks, but not on dynamic LACP trunks.

The switch mirrors traffic at line rate. When mirroring multiple interfaces in networks with high traffic levels, it is possible to copy more traffic to a mirroring destination than the link supports. In this case, some mirrored traffic may not reach the destination. If you are mirroring a high traffic volume, distribute the load to multiple exit ports if possible.

Updating from a Legacy Mirroring Configuration

On a switch running a software version earlier than K.12.xx and also configured for mirroring, downloading and booting from software release K.12.xx or greater produces the following mirroring configuration:

- The legacy port or VLAN mirroring configuration maps to session 1.
- Selection criteria for session 1 is set to both (that is, mirroring traffic entering and leaving the switch on the configured interface).
- The local exit port in the legacy configuration is applied to session 1.

Notes

Booting from Software Versions Earlier than K.12.xx: If it is necessary to boot the switch from a legacy (pre-K.12.xx) software version after using version K.12.xx or greater to configure mirroring, remove mirroring from the configuration before booting with the earlier software.

Maximum Supported Frame Size: The IPv4 encapsulation of mirrored traffic adds a 54-byte header to each mirrored frame. If a resulting frame exceeds the MTU (Maximum Transmission Unit) allowed in the path from the mirroring source to the mirroring destination, the frame is dropped. For more information, refer to “Maximum Supported Frame Size” on page B-69.

No Frame Truncation: Mirroring does not truncate frames, and oversized mirroring frames will be dropped. Also, remote mirroring does not allow downstream devices in a mirroring path to fragment mirrored frames.
Using the Menu or Web Interface To Configure Local Mirroring

Menu and Web Interface Limits

The Menu and Web interfaces can be used to quickly configure or reconfigure local mirroring on session 1, and allow one of the following two mirroring source options:

- any combination of source port(s), trunk(s), and/or a mesh
- one static, source VLAN interface

The Menu and Web interfaces also have these limits:

- Configure and display only session 1 and only as a local mirroring session for traffic in both directions on the specified interface. (Selecting inbound-only or outbound-only is not an option.)
- If session 1 has been configured in the CLI for local mirroring for inbound-only or outbound-only traffic on one or more interfaces, then using the Menu or Web interface to change the session 1 configuration automatically reconfigures the session to monitor both inbound and outbound traffic on the designated interface(s).
- If session 1 has been configured in the CLI with an ACL or as a remote mirroring session, then the Menu and Web interfaces are not available for changing the session 1 configuration.
- The CLI (and SNMP) can be used to override any Menu or Web interface configuration of session 1.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Configuration Steps

Notes

If mirroring has already been enabled on the switch, the Menu screens will appear differently than shown in this section.

1. From the Main Menu, Select:
 2. Switch Configuration...
 3. Network Monitoring Port

 Figure B-18. The Default Network Mirroring Configuration Screen

2. In the Actions menu, press [E] (for Edit).
3. If mirroring is currently disabled for session 1 (the default), then enable it by pressing the Space bar (or [Y]) to select Yes.
4. Press the down arrow key to display a screen similar to the following and move the cursor to the Monitoring Port parameter.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

5. Use the Space bar to select the port to use for sending mirrored traffic to a locally connected traffic analyzer or IDS. (The selected interface must be a single port. It cannot be a trunk or mesh.) In this example, port 5 is selected as the local exit port.

6. Highlight the Monitor field and use the Space bar to select the interfaces to mirror:

 Ports: Use for mirroring ports, static trunks, or the mesh.

 VLAN: Use for mirroring a VLAN.

7. Do one of the following:
 - If you are mirroring ports, static trunks, or the mesh, go to step 8.
 - If you are mirroring a VLAN:
 i. Press [Tab] or the down arrow key to move to the **VLAN** field.
 ii. Use the Space bar to select the VLAN you want to mirror.
 iii. Go to step 10.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

8. Use the down arrow key to move the cursor to the **Action** column for the individual port interfaces and position the cursor at a port, trunk, or mesh you want to mirror.

9. Press the Space bar to select **Monitor** for the port(s) and/or trunk(s) and/or mesh that you want mirrored. Use the down arrow key to move from one interface to the next in the **Action** column. (If the mesh or any trunks are configured, they will appear at the end of the port listing.)

10. When you finish selecting interfaces to mirror, press **[Enter]**, then press **[S]** (for **Save**) to save your changes and exit from the screen.

11. Return to the Main Menu.
CLI: Configuring Local and Remote Mirroring

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Reference</td>
<td></td>
</tr>
<tr>
<td>Local Mirroring Commands</td>
<td>B-38</td>
</tr>
<tr>
<td>Remote Mirroring Commands</td>
<td>B-39</td>
</tr>
<tr>
<td>Configuring a Session Destination on a Remote Exit Switch</td>
<td></td>
</tr>
<tr>
<td>mirror endpoint ip</td>
<td></td>
</tr>
<tr>
<td>< src-ip > < src-udp-port > < dst-ip > < port-#></td>
<td>B-41</td>
</tr>
<tr>
<td>Configuring a Local Destination on a Session Source Switch</td>
<td></td>
</tr>
<tr>
<td>mirror < 1 - 4 > [name < name-str >] port < port-#></td>
<td></td>
</tr>
<tr>
<td>Configuring a Remote Destination on a Session Source Switch</td>
<td></td>
</tr>
<tr>
<td>mirror < 1 - 4 > [name < name-str >] remote ip</td>
<td></td>
</tr>
<tr>
<td>< src-ip > < src-udp-port > < dst-ip></td>
<td>B-45</td>
</tr>
<tr>
<td>Defining Traffic To Mirror on a Session Source Switch</td>
<td></td>
</tr>
<tr>
<td>interface < port/trunk/mesh > monitor</td>
<td></td>
</tr>
<tr>
<td>all < in</td>
<td>out</td>
</tr>
<tr>
<td>ip access-group < acl-name > in mirror</td>
<td>B-52</td>
</tr>
<tr>
<td>vlan < vid-#> monitor</td>
<td></td>
</tr>
<tr>
<td>all < in</td>
<td>out</td>
</tr>
<tr>
<td>ip access-group < acl-name > in mirror</td>
<td>B-54</td>
</tr>
<tr>
<td>Display Commands</td>
<td></td>
</tr>
<tr>
<td>show monitor [endpoint</td>
<td>1 - 4</td>
</tr>
<tr>
<td>Mirroring Examples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-63</td>
</tr>
<tr>
<td>Maximum Frame Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-69</td>
</tr>
<tr>
<td>Operating Notes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-70</td>
</tr>
</tbody>
</table>

Using the CLI you can configure a mirroring session to an exit port on either the same switch as the source interface (local mirroring) or on another switch (remote mirroring). (The remote switch must be a ProCurve switch offering the full mirroring capabilities described in this chapter.)
General Steps for Using the CLI To Configure Mirroring

Caution

Configuring a switch with the destination and traffic selection criteria for a given mirroring session causes the switch to immediately begin mirroring traffic to that destination. In the case of remote mirroring, which uses IPv4 encapsulation, if the intended exit switch is not already configured as the destination for that session, its performance may be adversely affected by the stream of mirrored traffic. For this reason, ProCurve strongly recommends that you configure the exit switch for a remote mirroring session before configuring the source switch for that same session.

Remote Mirroring (Mirroring Source and Destination on Different Switches).

1. Determine the session IP addressing, UDP port number, and destination (exit) port number for the remote session:
 - source VLAN or subnet IP address on the source switch
 - destination VLAN or subnet IP address on the destination switch
 - random UDP port number for the session (7933-65535)
 - exit port on destination switch (Must belong to the same VLAN as the port through which the remotely mirrored traffic for the session enters the switch.)

 (For a given session, the IP addressing and UDP port number selected in this step must be used on both the source and destination switches.)

2. On the mirroring destination (exit) switch, use the `mirror endpoint` command with the information from step 1 to configure a mirroring session to a specific exit port.

3. Determine the session identity (1 - 4) and (optional) alphanumeric name to use on the mirroring source switch.

4. Determine the source interface(s) to monitor (VLAN, port, mesh) and the traffic selection method:
 - Direction: in, out, or both
 - inbound ACL

5. On the mirroring source switch:
 a. Use the `mirror` command with the selected session identity (1 - 4) and the IP addresses and UDP port number from step 1, to configure a mirroring session.
 b. Use the `int < port/trunk/mesh > monitor` and/or `vlan < vid > monitor` commands to configure the mirroring source(s) defined in step 4 and assign them to the configured session.
After completing step 5b, the switch begins mirroring traffic to the remote destination for the configured session.

Local Mirroring (Mirroring Source and Destination on the Same Switch).

1. Determine the session identity and local destination port:
 - session number (1-4) and (optional) alphanumeric name
 - exit port (This can be any port on the switch except a mirroring source port.)

2. Use `mirror < 1 - 4 > [name < name-str>] port < port-#>` to configure the session.

3. Determine the source interface(s) to monitor (VLAN, port, mesh) and the traffic selection method:
 - in, out, or both
 - inbound ACL

4. Use the `monitor` command to assign the source interface(s) to the session.

After completing step 4, the switch begins mirroring traffic to the configured exit port.

The next two sections provide quick references to the command syntax options for executing the above general steps.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Quick Reference to Local Mirroring Set-Up

These commands configure or remove mirroring where the mirroring source and destination are on the same switch. For command syntax details, refer to the pages listed after each heading. For each mirroring Source Switch option:

- The `mirror` command identifies the destination for the mirroring session.
- The `interface` and `vlan` commands identify the mirroring source; that is, the interface type, the traffic to mirror, and the mirroring session to use.

To Configure or Remove a Local Mirroring Session
Mirroring Session Number, Exit Port, and (Optional) Session Name (Page B-44)

```
mirror < 1 - 4 > port < port-# > [ name < name-str > ]
nomirror < 1 - 4 >
```

The `no` form of the command removes the mirroring session and any mirroring source previously assigned to that session by the following commands.

To Configure or Remove Mirroring on Port/Trunk/Mesh Interfaces for Local Sessions:

Directional Criteria Selects Traffic To Mirror (Page B-48).

```
[no] interface < port/trunk/mesh > monitor all [ in | out | both ] mirror
< 1 - 4 | name-str > [ < 1 - 4 | name-str > < 1 - 4 | name-str > < 1 - 4 | name-str > ]
```

Inbound ACL Criteria Selects Traffic To Mirror (Page B-52).

```
[no] interface < port/trunk/mesh > monitor ip access-group < acl-name > in mirror
< 1 - 4 | name-str > [ < 1 - 4 | name-str > < 1 - 4 | name-str > < 1 - 4 | name-str > ]
```

The `< name-str >` option applies only if the specified mirroring session has already been configured with the `name < name-str >` option in the `mirror` command.

The `no` form of the command removes the `< port/trunk/mesh >` mirroring source from the specified session, but leaves the session available for other assignments.

To Configure or Remove Mirroring on VLAN Interfaces for Local Sessions:

Directional Criteria Selects Traffic To Mirror (Page B-50).

```
[no] vlan < vid-# > monitor all [ in | out | both ] mirror < 1 - 4 | name-str >
[ < 1 - 4 | name-str > < 1 - 4 | name-str > < 1 - 4 | name-str > ]
```

Inbound ACL Criteria Selects Traffic To Mirror (Page B-54).

```
[no] vlan < vid-# > monitor ip access-group < acl-name > in mirror < 1 - 4 | name-str >
[ < 1 - 4 | name-str > < 1 - 4 | name-str > < 1 - 4 | name-str > ]
```

The `< name-str >` option applies only if the mirroring session has already been configured with the `name < name-str >` option in the `mirror` command.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

The no form of the command removes `vlan < vid-#>` mirroring source from the specified session, but leaves the session available for other assignments.

Note
If session 1 is already configured with a destination, you can execute `[no] vlan < vid > monitor` or `[no] interface < port > monitor` without mirroring criteria and a mirror session number. In this case, the switch automatically configures or removes mirroring for inbound and outbound traffic from the specified VLAN or port(s) to the destination configured for session 1.

Quick Reference to Remote Mirroring Set-Up
These commands configure mirroring where the mirrored traffic source and destination are on different switches. For each mirroring source switch option:
- The `mirror` command identifies the destination for the mirroring session.
- The `interface` and `vlan` commands identify the interface type, the traffic to mirror, and the mirroring session to use for the selected traffic

For command syntax details, refer to the pages listed after each heading.

Caution
When configuring a remote mirroring session, always configure the destination switch first. Configuring the source switch first can result in a large volume of mirrored, IPv4-encapsulated traffic arriving at the destination without an exit path, which can slow switch performance.

To Enable or Disable a Remote Mirroring Destination on the Switch:
This command is executed on a destination switch and designates the exit port to use with a mirroring session you will configure on another switch used as a mirroring source. The data used for this match on the destination switch includes:
- the unique UDP port number you plan use in the mirroring session configuration in the source switch (recommended range: 7933-65535)
- the source and destination IP addresses you plan to use in the mirroring session configuration in the source switch
- the port number of the exit port you want to use on the destination switch

Source Data Relates Mirrored Session to Exit Port on Destination Switch (Page B-41):
```
mirror endpoint ip < src-ip-addr > < src-udp-port > < dst-ip-addr > port < port-#>
no mirror endpoint ip < src-ip-addr > < src-udp-port > < dst-ip-addr >
```
(On the destination switch, the mirrored traffic entry port for a given session and the exit port for that session must belong to the same VLAN.)
To Configure or Remove a Mirroring Session on a Source Switch

Defines a Remote Mirroring Session on a Source Switch (Page B-44):

```plaintext
mirror <1 - 4 > [name < name-str >] remote ip < src-ip > < src-udp-port > < dst-ip >
no mirror <1 - 4 >
```

The no command form removes both the mirroring session and any mirroring source(s) previously assigned to the session by the following commands.

To Configure Port or Trunk Mirroring on a Source Switch:

Directional Criteria Selects Traffic To Mirror (Pages B-48):

```plaintext
[no] interface < port/trunk/mesh > monitor all < in | out | both > mirror
<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >]
```

Inbound ACL Criteria Selects Traffic To Mirror (Pages B-52):

```plaintext
[no] interface < port/trunk/mesh > monitor ip access-group < acl-name > in mirror
<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >]
```

The < name-str > option applies only if the specified mirroring session has already been configured with the name < name-str > option in the mirror command.

The no command form removes the < port/trunk/mesh > mirroring source from the specified session, but leaves the session available for other assignments.

To Configure VLAN Mirroring on a Source Switch:

Directional Criteria Selects Traffic To Mirror (Pages B-50):

```plaintext
[no] vlan < vid-# > monitor all < in | out | both > mirror <1 - 4 | name-str >
[<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >]
```

Inbound ACL Criteria Selects Traffic To Mirror (Pages B-54):

```plaintext
[no] vlan < vid-# > monitor ip access-group < acl-name > in mirror <1 - 4 | name-str >
[<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >[<1 - 4 | name-str >]
```

The < name-str > option applies only if the specified mirroring session has already been configured with the name < name-str > option in the mirror command.

The no command form removes vlan < vid-# > mirroring source from the specified session, but leaves the session available for other assignments.

Note

If session 1 is already configured with a destination, you can execute [no] vlan < vid > monitor or [no] interface < port > monitor without mirroring criteria and a mirror session number. In this case, the switch automatically configures or removes mirroring for inbound and outbound traffic from the specified VLAN or port(s) to the destination configured for session 1.
1. Determine the Mirroring Session Identity and Destination

For a Local Mirroring Session. Determine the port number for the exit port (such as A5, B10, etc.), then go to “4. Configure Mirroring Sources” on page B-47.

For a Remote Mirroring Session. Determine the following and then go to step 2, below.

- the IP address of the VLAN or subnet on which the exit port exists on the destination switch
- the port number for the desired exit port on the destination switch (On the destination switch, the mirrored traffic entry port for a given remote mirroring session and the exit port for that session must belong to the same VLAN.)
- the IP address of the VLAN or subnet on which the mirrored traffic enters or leaves the source switch
- the unique UDP port number to use for the session (The recommended range is 7933-65535. Refer to the following “Caution”.)

Caution

Although the switch allows use of UDP port numbers in the range of 1 to 65535, UDP port numbers below 7933 are reserved for various IP applications. Using them for mirroring can result in disrupting other IP functions, and can also result in non-mirrored traffic received on the destination switch being sent to a mirroring exit port.

2. Configure the Remote Mirroring Session on Destination Switch

This step is needed when the exit port for a mirroring session is on a different switch than the mirroring source. (For local mirroring, go to step 3 on page B-47.) In this case, the mirroring destination switch must be configured to recognize each unique mirroring session and assign its traffic to an exit port before the source switch is configured to send mirrored traffic. This is done by configuring the destination switch with the values determined for remote mirroring in step 1, above.

Note

A switch operating as a destination for mirrored traffic sessions can support 32 different remote sessions (and 4 local sessions). Multiple sessions can be assigned to the same exit port or distributed to multiple exit ports.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Syntax: mirror endpoint ip < src-ip > < src-udp-port > < dst-ip > < port-# >
no mirror endpoint ip < src-ip > < src-udp-port > < dst-ip >

This command is used on a destination switch to establish the endpoint for a specific mirroring session you will configure on a remote mirroring source switch. The command uniquely associates the mirrored traffic from the desired session on the source switch with a specific exit port on the destination switch. This is done by using the same set of source and destination identifiers when configuring the same session on both the source and destination switches. Thus, for a given mirroring session, the <src-ip>, <src-udp-port> and <dst-ip> for the mirror endpoint command must be the same on both switches. To see this correspondence, refer to the mirror command syntax under “Configuring a Source Switch for a Mirroring Destination on a Remote Switch” on page B-45.

The no form of the command deletes the mirroring endpoint support for the configured session on the remote destination switch.

Caution: Mirroring endpoint support for a given session should not be removed if there are any remote source switches currently configured to mirroring traffic to the endpoint for that session. See also the Caution on page B-39.

< src-ip >: Must exactly match the < src-ip > setting you will configure in the source switch for the remote mirroring session the exit switch is being configured to support.

< src-udp-port >: Must exactly match the < src-udp-port > setting you will configure in the source switch for the remote mirroring session the exit switch is being configured to support. (The recommended range is 7933-65535.) This setting associates the source mirroring session with the desired mirror endpoint by using the same, unique UDP port number to identify a given mirroring session on a source switch and the session’s corresponding destination on a remote exit switch.

< dst-ip >: Must exactly match the < dst-ip > setting configured in the source switch for the remote mirroring session the exit switch is being configured to support.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Syntax:

```
mirror endpoint ip < src-ip > < src-udp-port > < dst-ip > < port-# >
no mirror endpoint ip < src-ip > < src-udp-port > < dst-ip >
```

- `< port-# >`: Exit port for mirrored traffic from the specified session. This is the port to which a traffic analyzer or IDS should be connected.

Note: On the remote exit switch, the mirrored traffic entry port for a given session and the exit port for that session must belong to the same VLAN.
3. Configure the Mirroring Session on the Source Switch

For local mirroring, only a session number and a destination port number are needed. (You also have the option of associating a name with the session number.) Refer to “Configuring Mirroring with a Destination on the Local (Source) Switch” below.

If the mirroring destination is on a remote switch instead of the local (source) switch, then the traffic source IP address, the mirroring destination IP address, and a unique (randomly selected) UDP port number are required for the mirroring session. (Refer to page B-45.)

Configuring Mirroring with a Destination on the Local (Source) Switch. For a given mirroring session on a source switch, use this command to specify the exit port to use on the same switch. To create the mirroring session itself, refer to the options under “1. Determine the Mirroring Session Identity and Destination” on page B-41.

Syntax:
mirror < 1 - 4 > port < port-# > [name < name-str >]
no mirror < 1 - 4 >

This command assigns the exit port to use for the specified mirroring session, and must be executed from the global configuration level.

The no form of the command removes the mirroring session and any mirroring source previously assigned to that session. To preserve the session while deleting a mirroring source assigned to it, refer to the no command descriptions under “4. Configure Mirroring Sources” on page B-47.

< 1 - 4 >: Identifies the mirroring session created by this command. (Multiple sessions on the switch can use the same exit port.)

name < name-str >: Optional alphanumeric name string used to identify the session. Can be up to 15 characters in length.

port < port-# >: Exit port for mirrored traffic from the specified session. This is the port to which a traffic analyzer or IDS should be connected.
Configuring a Source Switch for a Mirroring Destination on a Remote Switch. Use this command when you want to mirroring traffic from a source switch to an exit port on a remote mirroring destination switch. For a given session, the values for the fields in this command should already be configured in the destination switch. (Refer to steps 1 and 2 on page B-41 and B-46.)

Caution

Configuring a switch with the traffic selection criteria and destination for a given mirroring session starts traffic mirroring to that destination. In the case of remote mirroring, which uses IPv4 encapsulation, if the intended exit switch is not already configured as the destination for that session, its performance may be adversely affected by the stream of mirrored traffic. For this reason, ProCurve strongly recommends that you configure the exit switch for a remote mirroring session, as described under “2. Configure the Remote Mirroring Session on Destination Switch” on page B-41, before using the the command in this section to configure the source switch for that same session.

Syntax:

```
[no] mirror < 1 - 4 > [name < name-str >] remote ip < src-ip > < src-udp-port > < dst-ip >
```

This command is used on the source switch to uniquely associate the mirrored traffic from a specific mirroring session with a specific, remote exit switch. Thus, for a given mirroring session, the same source and destination values should be configured on both the mirroring destination switch and the mirroring source switch. (Each remote mirroring session having the same source and destination IP addresses should have a unique UDP port value.)

When you execute this command, this message appears:

Caution: Please configure destination switch first.

Do you want to continue [y/n]?

- If you have not yet configured the session on the mirroring destination switch, use the instructions in step 2 on page B-41 to do so before using this command.
- If you previously configured the session on the mirroring destination switch, type y (for “yes”) to complete this command.

The no form of the command removes the mirroring session and any mirroring source previously assigned to that session. To preserve the session while deleting a mirroring source assigned to it, refer to the no command descriptions under “4. Configure Mirroring Sources” on page B-47.

— Continued —
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Syntax: [no] mirror <1 - 4> [name <name-str>] remote ip <src-ip> <src-udp-port> <dst-ip>

<1 - 4>: Identifies the mirroring session created by this command.

name <name-str>: Optional alphanumeric name string used as an additional session identifier. Can be up to 15 characters in length.

<src-ip>: The IP address of the VLAN or subnet on which the traffic to be mirrored enters or leaves the switch.

<src-udp-port>: This value associates the configured mirroring session with a UDP port number. Where multiple sessions have the same source IP address (<src-ip>) and destination IP address (<dst-ip>), the UDP port number should be unique for each session. The UDP port number used for a given session should be in the range of 7933 - 65535.

Caution: UDP port numbers below 7933 are reserved for various IP applications. Using them for mirroring can result in disrupting other IP functions, and can also result in non-mirrored traffic received on the destination switch being sent to a mirroring exit port.)

The configured UDP port number is included in the frames mirrored from the source switch to the remote exit switch (mirror endpoint), and enables the exit switch to match the frames to the exit port configured for that combination of UDP port number, source IP address, and destination IP address. To see this correspondence, refer to the mirror endpoint command syntax under “2. Configure the Remote Mirroring Session on Destination Switch” on page B-41.

<dst-ip>: For the mirroring session specified in the command, this is the IP address of the VLAN or subnet on which the desired remote exit port exists. (The exit port is specified in the mirroring configuration on the exit switch, and a traffic analyzer or IDS should be connected to this port.) Refer to “2. Configure the Remote Mirroring Session on Destination Switch” on page B-41.
4. Configure Mirroring Sources

This action configures a source switch with the criteria for selecting the traffic to mirror, and assigns the configured source criteria to a previously configured mirroring session.

Traffic Selection Options

The traffic criteria includes one option from each of the following two selection criteria:

- **interface type**
 - port, trunk, and/or mesh
 - VLAN
- **traffic direction or IP type**
 - all traffic inbound, outbound, or both
 - ACL-filtered IP traffic type (inbound-only)

Mirroring Source Limits

For a given mirroring session you can configure any *one* of the following mirroring source options:

- multiple ports, trunks, and/or a mesh
- One VLAN (If a VLAN is already assigned to a mirroring session, assigning another VLAN to the same session causes the second assignment to overwrite the first.)
- One ACL assignment per session (For example, if you configure an ACL as the source for mirrored traffic inbound on VLAN 1 for session 4, no port, trunk, mesh, other ACL, or other VLAN mirroring sources can be configured for session 4.)
Using Interface Identity and Direction of Movement To Select the Traffic To Mirror from a Source Switch

Use the commands in this section to configure mirrored traffic selection for either local or remote mirroring. Options for the selection criteria includes:

- Interface Options: VLAN, port, or trunk
- Directional Options: entering or leaving the switch, or both

Port, Trunk, and/or Mesh Interface with Traffic Direction as the Selection Criteria. Use this command when the direction of traffic movement on the port, trunk, and/or mesh interface defines the criteria for mirroring traffic.

Syntax:

```plaintext
[no] interface < port/trunk/mesh > monitor all < in | out | both > mirror < 1 - 4 | name-str > [ < 1 - 4 | name-str >] < 1 - 4 | name-str > ]
```

This command assigns a mirroring source to a previously configured mirroring session on a source switch. It specifies the port, trunk, and/or mesh source(s) to use, the direction of traffic to mirror, and the session identifier.

The **no** form of the command removes a mirroring source assigned to the session, but does not remove the session itself. This enables you to repurpose a session by removing an unwanted mirroring source and adding another in its place.

interface < port/trunk/mesh >: Identifies the port(s), static trunk(s), and/or mesh on which to mirroring traffic. Use a hyphen for a range of consecutive ports or trunks (a5-a8, Trk2-Trk4). Use a comma to separate non-contiguous interfaces (b11,b14,Trk4,Trk7).

monitor all < in | out | both >: For the interface specified by < port/trunk/mesh >, selects traffic to mirror based on whether the traffic is entering or leaving the switch on the interface.

- **in:** Mirror entering traffic.
- **out:** Mirror exiting traffic.
- **both:** Mirror traffic entering or exiting.

(Using **monitor** without mirroring criteria or **session** number affects session 1. Refer to “Monitor Command” on page B-72.)

---Continued---

B-48
mirror <1 - 4 | < name-str >: Assigns the traffic defined by the interface and direction to a session by number or (if configured) by name. (The session must have been previously configured. Refer to “3. Configure the Mirroring Session on the Source Switch” on page B-44.) Depending on how many sessions are already configured on the switch, you can use the same command to assign the specified source to up to four numeric or alphanumeric identifiers. For example, 1 2 4. For limits on configuring mirroring sources to a given session, refer to “Mirroring Source Limits” on page B-47.

< 1 - 4 >: Assigns a numeric session identifier to associate with the traffic selected for mirroring by this command.

[name < name-str]: Optional; uses a previously configured alphanumeric identifier to associate the traffic source with the mirroring session. The string can be used interchangeably with the mirroring session number when using this command to assign a mirroring source to a session. To configure an alphanumeric name for a mirroring session refer to the command description under “Configuring a Source Switch for a Mirroring Destination on a Remote Switch” on page B-45.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

VLAN Interface with Traffic Direction as the Selection Criteria. Use this command when the direction of traffic movement on a specific VLAN interface defines the criteria for mirroring traffic:

Syntax:
\[
\text{vlan } < \text{vid-#} > \text{ monitor all } < \text{ in | out | both } > \text{ mirror } < 1 - 4 | \text{ name-str } > \\
[< 1 - 4 | \text{ name-str } > < 1 - 4 | \text{ name-str } > < 1 - 4 | \text{ name-str } >]
\]

This command assigns a mirroring source to a previously configured mirroring session on a source switch. It specifies the VLAN source to use, the direction of traffic to mirror, and the session identifier.

Assigning a VLAN to a mirroring session precludes assigning any other mirroring sources to the same session. If a VLAN is already assigned to a given mirroring session, using this command to assign another VLAN to the same mirroring session results in the second assignment replacing the first. Also, if there are other (port, trunk, or mesh) mirroring sources already assigned to a session, the switch displays a message similar to:

Mirror source port exists on session N. Can not add mirror source VLAN.

The no form of the command removes a mirroring source assigned to the session, but does not remove the session itself. This enables you to repurpose a session by removing an unwanted mirroring source and adding another in its place.

\text{vlan } < \text{vid-#} > : Identifies the VLAN on which to mirror traffic.

\text{monitor all } < \text{ in | out | both } > : Uses the traffic’s direction of movement on the specified \text{vid-#} to select traffic to mirror. Refer to the syntax description on page B-48. (Using \text{monitor} without mirroring criteria or session number affects session 1. Refer to “Monitor Command” on page B-72.)

\text{mirror } < 1 - 4 | \text{name-str} > : Assigns the traffic defined by the interface and direction to a session, by number or (if configured) by name. (The session must have been previously configured. Refer to “3. Configure the Mirroring Session on the Source Switch” on page B-44.) Depending on how many sessions are already configured on the switch, you can use the same command to assign the specified source to up to four numeric or alphanumeric identifiers. For example, 1 2 4. For limits on configuring mirroring sources to a given session, refer to “Mirroring Source Limits” on page B-47.

\text{< 1 - 4 >} : Assigns a numeric session identifier to associate with the traffic selected for mirroring.

— Continued —
Using ACL Assignment and Traffic Direction
To Select the Traffic To Mirror from a Source Switch

Use the commands in this section to apply ACL criteria for either local or remote mirroring.

ACL Operation for Mirroring Applications. Using the ACL (Access Control List) mirroring option requires configuration of an ACL. For ACL configuration and operating details, refer to the chapter titled “Access Control Lists (ACLs)” in the latest Access Security Guide for your switch.

ACLs used for selecting traffic to mirror are configured in the same way as ACLs for traffic filtering. This means that an ACL applied as a static port ACL, VLAN ACL (VACL), or routed ACL (RACL) can be applied to mirroring. (An ACL used for mirroring does not filter traffic.)

When an ACL is applied to mirroring, the permit and deny statements in the ACL take on a different role than in ACL traffic filtering. That is, a packet matching a permit statement will be mirrored, and a packet matching a deny statement (including the explicit deny at the end of every ACL) will not be mirrored. Any log keywords in ACL deny statements are ignored by the mirroring function. If both a mirrored ACL and a statically-configured ACL are applied to the same interface, and a packet matches a permit statement in the mirrored ACL and a deny statement in statically-configured ACL, the packet will be mirrored and dropped. Note that each mirrored ACL applied to an interface uses shared switch resources. The rules applicable for adding, removing, replacing, or modifying a traffic-filtering ACL also apply to an ACL used for mirroring.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Notes

If a mirroring session is configured with a mirroring source that uses an ACL for traffic selection, then no other mirroring sources can be configured to use that session. Conversely, if a mirroring session is already configured with a mirroring source that does not use an ACL, then the session cannot accept an additional mirroring source that does use an ACL.

The ACL option applies only to IP traffic entering the switch on the specified interface. An ACL used for mirroring purposes ignores non-IP traffic when selecting traffic to mirror.

The switch ignores any log statements included in deny ACEs in an ACL used for mirroring purposes.

ACL (Access Control List) Selection Criteria for Mirroring from a Port, Trunk, or Mesh Interface. ACL traffic filtering for mirroring purposes operates as described in the ACL chapter except that the effect of the ACL is to mirror or not mirror IP traffic, instead of to permit or deny the IP traffic.

Syntax:

```
[no] interface <port/trunk/mesh> monitor ip access-group <acl-name> in mirror <1 - 4 | name-str> [<1 - 4 | name-str>] [<1 - 4 | name-str>] [<1 - 4 | name-str>]
```

This command assigns a mirroring source to a previously configured mirroring session on a source switch. It specifies the port, trunk, and/or mesh source(s) to use, the (previously configured) ACL to use for selecting traffic to mirror, and the session identifier. Use this option to mirror selected IP traffic entering the switch on specified ports, trunks, and/or a mesh.

The no form of the command removes the mirroring source assigned to the session, but does not remove the session itself. This enables you to repurpose a session by removing an unwanted mirroring source and adding another in its place.

interface <port/trunk/mesh>: Identifies the port(s), static trunk(s), and/or mesh on which to mirror traffic permitted by the ACL. Use a hyphen for a range of consecutive ports or trunks (a5-a8, Trk2-Trk4). Use a comma to separate non-contiguous interfaces (b11,b14,Trk4,Trk7).

—Continued—
monitor ip access-group < acl-name > in: For the interface specified by < port/trunk/mesh >, selects the IP traffic to mirror based on the selection criteria specified in the named ACL. (The ACL must be already configured on the switch. Refer to “ACL Operation for Mirroring Applications” on page B-51.)

(Using monitor without mirroring criteria or session number affects session 1. Refer to “Monitor Command” on page B-72.)

< acl-name >: For traffic entering the switch on the specified interface, mirror the IP traffic having a match with the permit ACEs in the named ACL. (IP traffic having a match with a deny ACE, including the implicit deny any or deny any any in the named ACL, will not be mirrored.)

mirror < 1 - 4 | < name-str >: Assigns the traffic defined by the interface to a session by number or (if configured) by name. (The session must have been previously configured. Refer to “3. Configure the Mirroring Session on the Source Switch” on page B-44.) Depending on how many sessions are already configured on the switch, you can use the same command to assign the specified source to up to four numeric or alphanumeric identifiers. For example, 1 2 4.

For limits on configuring mirroring sources to a given session, refer to “Mirroring Source Limits” on page B-47.

< 1 - 4 >: Assigns a numeric session identifier to associate with the traffic selected for mirroring by this command.

[name < name-str >]: Optional; uses a previously configured alphanumeric identifier to associate the traffic source with the mirroring session. The string can be used interchangeably with the mirroring session number when using this command to assign a mirroring source to a session. To configure an alphanumeric name for a mirroring session refer to the command description under “Configuring a Source Switch for a Mirroring Destination on a Remote Switch” on page B-45.
ACL (Access Control List) Selection Criteria for Mirroring from a VLAN Interface.

Syntax:

```
vlan <vid-#> monitor ip access-group <acl-name> in
   mirror <1 - 4 | name-str> [<1 - 4 | name-str>] [<1 - 4 | name-str>] [<1 - 4 | name-str>]
```

This command assigns a mirroring source to a previously configured mirroring session on a source switch. It specifies the VLAN source to use, the (previously configured) ACL to use for selecting traffic to mirror, and the session identifier. Use this option when you want to mirror selected IP traffic entering the switch on a specific VLAN.

The `no` form of the command removes the mirroring source assigned to the session, but does not remove the session itself. This enables you to repurpose a session by removing an unwanted mirroring source and adding another in its place.

- `vlan <vid-#>`: Identifies the VLAN on which to mirror traffic.
- `monitor ip access-group <acl-name> in`: For the interface specified by `<vid-#>`, selects the IP traffic to mirror based on the selection criteria specified in the named ACL. (The ACL must be already be configured on the switch. Refer to “ACL Operation for Mirroring Applications” on page B-51.) (Using `monitor` without mirroring criteria or session number affects session 1. Refer to “Monitor Command” on page B-72.)
 - `<acl-name>`: For traffic entering the switch on the specified interface, mirror the IP traffic having a match with the `permit` ACEs in the named ACL. (IP traffic matching a `deny` ACE, including the implicit `deny any` or `deny any any` in the named ACL is dropped.)
 - `mirror <1 - 4 | name-str>`: Assigns the traffic defined by the interface to a session by number or (if configured) by name. (The session must have been previously configured. Refer to “3. Configure the Mirroring Session on the Source Switch” on page B-44.) Depending on how many sessions are already configured, you can use the same command to assign the specified source to up to four numeric or alphanumeric identifiers. For example, `1 2 test-mirror`. For limits on configuring mirroring sources to a given session, see “Mirroring Source Limits” on page B-47.
 - `<1 - 4>`: Assigns a numeric session identifier to associate with the traffic selected for mirroring.

— Continued —
Monitoring and Analyzing Switch Operation
Traffic Mirroring

— Continued from Previous Page—

[name < name-str >]: Optional; uses a previously configured alphanumeric identifier to associate the traffic source with the mirroring session. The string can be used interchangeably with the mirroring session number when using this command to assign a mirroring source to a session. To configure an alphanumeric name for a mirroring session refer to the command description under “Configuring a Source Switch for a Mirroring Destination on a Remote Switch” on page B-45.
Displaying the Mirroring Configuration

Displaying the Mirroring Configuration Summary

This command displays a summary of the current source and destination mirroring configured on the switch.

Syntax: `show monitor`

*If a remote mirroring source is configured on the switch, then the following fields appear. Otherwise, the output displays this message: **Mirroring is currently disabled.***

Sessions: Lists the sessions configurable on the switch.

Status: For each session, shows current session activity:

- **active:** The session is configured and is mirroring traffic.
- **inactive:** The session is configured, but is not currently mirroring traffic.
- **not defined:** Mirroring not configured for this session.

Type: Indicates whether the session is a **port** (local) or **IPv4** (remote) mirroring session.

Sources: Indicates how many mirroring sources are using each mirroring session.

ACL: Indicates whether the source is using an ACL to select traffic for mirroring.

*If a remote mirroring endpoint is configured on the switch, then the following fields appear. Otherwise, the output displays the following: **There are no Remote Mirroring endpoints currently assigned.***

Type: Indicates whether the session is a **port** (local) or **IPv4** (remote) mirroring session.

UDP Source Addr: The IP address configured for the source VLAN or subnet on which the traffic source exists. (For a given mirroring session, this value should be the same on the source and destination switches.)

UDP port: The unique UDP port number identifying a given mirroring session. (For a given mirroring session, this value should be the same on the source and destination switches.)

—Continued—
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Syntax: show monitor

—Continued from Previous Page—

UDP Dest Addr: The IP address configured as the destination VLAN or subnet on which the exit port exists. (For a given mirroring session, this value should be the same on the source and destination switches.)

Dest Port: For a given mirroring session, identifies the exit port on the destination switch.

For example, the following summary shows three mirroring sources (one local and two remote) and one remote mirroring destination configured on the switch.

```
ProCurve# show monitor

Network Monitoring

<table>
<thead>
<tr>
<th>Sessions</th>
<th>Status</th>
<th>Type</th>
<th>Sources</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>active</td>
<td>port</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>active</td>
<td>IPv4</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>not defined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>inactive</td>
<td>IPv4</td>
<td>0</td>
<td>no</td>
</tr>
</tbody>
</table>

Remote Mirroring - Remote Endpoints

<table>
<thead>
<tr>
<th>Type</th>
<th>UDP Source Addr</th>
<th>UDP port</th>
<th>UDP Dest Addr</th>
<th>Dest Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>10.10.30.1</td>
<td>7950</td>
<td>10.10.20.1</td>
<td>B10</td>
</tr>
</tbody>
</table>
```

Local and Remote Mirroring Sources:
- **Session 1** is performing local mirroring from an ACL source.
- **Session 2** is performing remote mirroring using non-ACL sources.
- **Session 3** is not configured.
- **Session 4** is configured for remote mirroring from a non-ACL source, but is currently not mirroring any traffic.

Remote Mirroring Destination:
The switch is configured as a remote mirroring destination (endpoint) for a source at 10.10.30.1, and is using port B10 as the exit port.

Figure B-20. Example of a Currently Configured Mirroring Summary on a Source Switch
Displaying the Remote Endpoint Configuration

Syntax: show monitor endpoint

This command displays the remote mirroring endpoint configuration on a switch. It does not include information for any local mirroring sessions configured on the switch. (To view a local mirroring configuration on the switch, use show monitor [<1-4 | name < name-str>]; pages B-56 and B-59.)

Type: Type: Indicates whether the session is a port (local) or IPv4 (remote) mirroring session.

UDP Source Addr: The IP address configured as the source VLAN or subnet on which the traffic source exists. (For a given mirroring session, this value should be the same on the source and destination switches.)

UDP port: The unique UDP port number identifying a given mirroring session. (For a given mirroring session, this value should be the same on the source and destination switches.)

UDP Dest Addr: The IP address configured as the destination VLAN or subnet on which the exit port exists. (For a given mirroring session, this value should be the same on the source and destination switches.)

Dest Port: For a given mirroring session, identifies the exit port on the destination switch.

For example, the following output indicates that a switch is configured as the endpoint (destination) for two remote mirroring sessions from the same source.

ProCurve(config)# show monitor endpoint
Remote Mirroring - Remote Endpoints

<table>
<thead>
<tr>
<th>Type</th>
<th>UDP Source Addr</th>
<th>UDP port</th>
<th>UDP Dest Addr</th>
<th>Dest Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>10.10.10.1</td>
<td>8001</td>
<td>10.10.30.2</td>
<td>4</td>
</tr>
<tr>
<td>IPv4</td>
<td>10.10.10.1</td>
<td>8003</td>
<td>10.10.30.2</td>
<td>5</td>
</tr>
</tbody>
</table>

These two sessions are from the same source, and are identified by different UPDP port numbers.

Figure B-21. Example of Displaying Only the Mirroring Endpoint Configuration
Displaying a Mirroring Session Configuration
on a Source Switch

Syntax: `show monitor < 1 - 4 | name < name-str >`

This command displays the current configuration of a selected, local or remote mirroring session on a source switch.

- **Session:** Displays the numeric ID of the selected session.
- **Session Name:** Displays the alphanumeric name of the session, if configured.
- **ACL:** Indicates whether the source is using an ACL to select traffic for mirroring.
- **Mirroring Destination:** For a local mirroring session, indicates the port configured as the exit port on the source switch. For a remote mirroring session, shows IPv4, which indicates mirroring to a remote (exit) switch.
- **UDP Source Addr:** The IP address configured for the source VLAN or subnet on which the traffic source exists. (For a given mirroring session, this value should be the same on the source and destination switches.)
- **UDP port:** The unique UDP port number identifying a given mirroring session. (For a given mirroring session, this value should be the same on the source and destination switches.)
- **UDP Dest Addr:** The IP address configured as the destination VLAN or subnet on which the exit port exists. (For a given mirroring session, this value should be the same on the source and destination switches.)
- **Status:** For each session, shows current session activity:
 - **active:** The session is configured and is mirroring traffic.
 - **inactive:** The session is configured, but is not currently mirroring traffic.
 - **not defined:** Mirroring not configured for this session.
- **Monitoring Sources:** For the associated session, indicates the source interface for the currently configured sessions. Options include source port, source trunk, or source VLAN.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Syntax: show monitor < 1 - 4 | name < name-str >

Direction: For the selected interface, indicates whether mirrored traffic is entering the switch (**in**), leaving the switch (**out**), or **both**.

For example, if you configure remote mirroring session 2 as shown in figure B-22, `show monitor 2` displays the session 2 configuration in figure B-23, below.

```
ProCurve(config)# mirror 2 name test-10 remote ip 10.10.10.1 8010 10.10.30.2
Caution: Please configure destination switch first.
Do you want to continue [y/n]? y
ProCurve(config)# ProCurve(config)# interface b1 monitor all both mirror 2
```

Figure B-22. Example of Configuring a Remote Mirroring Session and Corresponding Source

```
ProCurve(config)# mirror 2 name test-10 remote ip 10.10.10.1 8010 10.10.30.2
Caution: Please configure destination switch first.
Do you want to continue [y/n]? y
ProCurve(config)# ProCurve(config)# interface b1 monitor all both mirror 2
```

Figure B-23. Example of Output for a Remote Mirroring Session

If there are no mirroring sources configured for a given mirroring session, these two fields are empty.

Syntax: show monitor < 1 - 4 | name < name-str >

ProCurve(config)# show monitor 2
Network Monitoring

| Session: 2 | Session Name: test-10 |
| ACL: no ACL relationship exists |

<p>| Mirror Destination: IPv4 |</p>
<table>
<thead>
<tr>
<th>UDP Source Addr</th>
<th>UDP port</th>
<th>UDP Dest Addr</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.1</td>
<td>8010</td>
<td>10.10.30.2</td>
<td>active</td>
</tr>
</tbody>
</table>

Monitoring Sources Direction

| Port: B1 | Both |

If there are no mirroring sources configured for a given mirroring session, these two fields are empty.
For the above configuration, `show monitor 1` produces the following output:

```
ProCurve_5400(config)# show monitor 1
Network Monitoring

    Session: 1   Session Name: Detail
    ACL: 100

        Mirror Destination:  B3   (Port)

        Monitoring Sources  Direction
        ------------------  ---------
        Port: B1            In
```

Figure B-24. Example of Output for a Local Mirroring Session

Viewing Mirroring in the Current Configuration File

Using the `show run` command, you can view the current mirroring configuration on the switch.

Source mirroring session entries begin with the `mirror` keyword and the mirroring sources are listed per-interface. For example:

```
ProCurve(config)# show run
Running configuration:
    ; J8697A Configuration Editor; Created on release #K.12.XX
    max-vlans 300
    ip access-list extended "100"
        10 permit icmp 0.0.0.0 255.255.255.255 0.0.0.0 255.255.255.255 0
        exit
    no ip address
    exit
    . . .
    mirror 1 port B3
    mirror 2 name "test-10" remote ip 10.10.10.1 8010 10.10.30.2
    . . .
    interface B1
        monitor ip access-group "100" In mirror 1
        monitor all Both mirror 2
        exit
    . . .
```

Figure B-25. Example of Using the Configuration File to View the Source Mirroring Configuration
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Destination mirroring session entries begin with **mirror endpoint**. In the following example, two sessions are using the same exit port:

```
ProCurve(config)# show run
Running configuration:
; J8693A Configuration Editor; Created on release #K.12.XX
module 3 type J8694A

... mirror endpoint ip 10.10.20.1 8010 10.10.30.2 port 4
mirror endpoint ip 10.10.51.10 7955 10.10.30.2 port 4
...
```

Figure B-26. Example of Using the Configuration File to View the Source Mirroring Configuration
Mirroring Configuration Examples

Local Mirroring Destination

Example of Local Mirroring Configuration. A system operator wants to mirror the inbound traffic from workstation “X” on port A5 and workstation “Y” on port B17 to a traffic analyzer connected to port C24. In this case, the operator chooses “1” as the session number. (Any unused session number from 1 to 4 is valid.) Since the switch provides both the source and destination for the traffic to monitor, local mirroring can be configured. In this case, the command sequence is:

1. Configure the local mirroring session.
2. Assign a mirroring source to the session.

![Figure B-27. Example of a Local Mirroring Topology](image)

```
ProCurve(config)# mirror 1 port c24
Caution: Please configure destination switch first.
Do you want to continue [y/n]? y
ProCurve(config)# interface a5,b17 monitor all in mirror 1
```

![Figure B-28. Example of Configuring Local Mirroring of Inbound Traffic](image)
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Remote Mirroring Destination Using a VLAN Interface and an ACL for Mirroring Criteria

In the network shown in figure B-29, the system operator has connected a traffic analyzer to port A15 (in VLAN 30) on switch D, and wants to monitor the Telnet traffic to the server at 10.10.30.153 from the workstations on switches A and B. The operator does this by configuring remote mirroring sessions on these two switches, and a mirroring destination on switch D. (Telnet traffic to the server from sources on switch C is not of interest, and routing is enabled on switches C and D.) Note that the port on which the mirrored traffic enters switch D, port A10 in this example, must be in the same VLAN as the configured exit port.

The operator does the following:

1. On switch D, configure a mirroring destination using port A15 in VLAN 30 as the exit port.

2. Configure switches A and B with mirroring sessions to the destination interface on switch D. Use a randomly selected UDP port number of 9300. (For information on selecting UDP port numbers to use for remote mirroring, refer to the syntax description on page B-42.) You can use the same random UDP port number on different interfaces because the identity of the mirroring source is the combination of the unique interface identity and the UDP port number, and not the UDP port number alone.

3. Configure an ACL on switches A and B to select inbound Telnet traffic intended for the server at 10.10.30.153.

Figure B-29. Example Topology for Remote Mirroring from a VLAN Interface
Monitoring and Analyzing Switch Operation
Traffic Mirroring

4. Using the ACLs to select the traffic to mirror, configure mirroring sessions for Telnet traffic entering switches A and B on VLANs 10 and 20. (Because the sessions are on different switches, you can use the same session number for both sessions if you want to.)

The following three figures illustrate the configuration steps on the mirroring destination switch (switch D) and on the mirroring sources (switches A and B). Since there is no need for a mirroring configuration on the intermediate device (switch C), this device can be any switch (or router) supporting IPv4 operation.

```
Switch-D(config)# mirror endpoint 10.10.10.119 9300 10.10.30.2 port a15
Switch-D(config)# mirror endpoint 10.10.20.145 9300 10.10.30.2 port a15
```

Figure B-30. Example of Configuring Remote Mirroring from Switches A and B on the Destination Switch
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Figure B-31. Example of Configuring Remote Mirroring of Inbound Traffic on Source Switch 1

1. Switch-A(config)# mirror 1 remote ip 10.10.10.119 9300 10.10.30.2
 Caution: Please configure destination switch first.
 Do you want to continue [y/n]? y

2. Switch-A(config)# access-list 100 permit tcp any host 10.10.30.153 eq telnet

3. Switch-A(config)# vlan 10 monitor ip access-group 100 in mirror 1

Figure B-32. Example of Configuring Remote Mirroring of Inbound Traffic on Source Switch 2

Except for the differences in source VLAN and IP address, the configuration for switch B is the same as for switch 1 (figure B-31).

Switch-B(config)# mirror 1 remote ip 10.10.20.145 9300 10.10.30.2
Caution: Please configure destination switch first.
Do you want to continue [y/n]? y

Switch-B(config)# access-list 100 permit tcp any host 10.10.30.153 eq telnet

Switch-B(config)# vlan 20 monitor ip access-group 100 in mirror 1
Remote Mirroring Destination Using a Port Interface and Directional Mirroring Criteria

In the network shown in figure B-33, the system operator has connected another traffic analyzer to port B10 (in VLAN 40) on switch D, and wants to monitor all traffic entering Switch A from client “X” on port C12. The operator does this by configuring a mirroring destination (with an exit port of B10) on switch D, and a remote mirroring session on Switch A. For this example, assume that the mirroring configuration from the proceeding example remains in place. This means that a different mirroring session number and UDP port number will be needed. Note that the port on which the mirrored traffic for this example enters switch D, port A20, must be in the same VLAN as the configured exit port for Traffic Analyzer 2, which is port B10.

Note

Because this example and the proceeding example create remote mirroring between the same source and destination IP addresses, the random UDP port number used in this example must be different than the one used in the proceeding example.

Figure B-33. Example Topology for Remote Mirroring from a Port Interface

The operator does the following:

1. On switch D, configure a mirroring destination using port B10 In VLAN 40 as the exit port.

2. Using `in` to specify the traffic selection criteria, configure mirroring session 2 on switch A for port C12. (The proceeding example configured session 1 on the same switch.)
3. Configure switch A to mirror session 2 to the destination interface for port B10 on switch D. Use a randomly selected UDP port number of 9400. (Refer to the Note on page B-67.) If you need information on selecting UDP port numbers to use for remote mirroring, refer to the syntax description on page B-42.

```
Switch-D(config)# mirror endpoint 10.10.10.119 9400 10.10.40.1 port b10
```

Figure B-34. Example of Configuring Remote Mirroring for Session 2 on the Destination Switch

```
Switch-A(config)# mirror 2 remote ip 10.10.10.119 9400 10.10.40.1
Caution: Please configure destination switch first.
Do you want to continue [y/n]? y
Switch-A(config)# interface c12 monitor all in mirror 2
```

1. Configures port C12 as the source of traffic to mirror (inbound).
2. Uses the source IP address and random UDP port number to identify session 2 mirrored traffic from VLAN 10, and specifies the destination IP address for this traffic. (The mirror exit port for this traffic is a member of the VLAN identified by the destination IP address.)
3. Configures port C12 as the source of traffic to mirror (inbound).

Figure B-35. Example of Configuring a Remote Mirroring Session for Traffic Inbound on a Port
Monitoring and Analyzing Switch Operation
Traffic Mirroring

Maximum Supported Frame Size

The IPv4 encapsulation of mirrored traffic adds a 54-byte header to each mirrored frame. If a resulting frame exceeds the MTU (Maximum Transmission Unit) allowed in the network, the frame is dropped.

Note

Mirroring does not truncate frames, and oversized mirroring frames will be dropped. Also, remote mirroring does not allow downstream devices in a mirroring path to fragment mirrored frames.

If jumbo frames are enabled on the mirroring source switch, then the mirroring destination switch and all downstream devices connecting the source switch to the mirroring destination must be configured to support jumbo frames.

Enabling Jumbo Frames To Increase the Mirroring Path MTU

On 1 Gbps and 10 Gbps ports in the mirroring path, you can reduce the number of dropped frames by enabling jumbo frames on all intermediate switches and routers. (The maximum transmission unit—MTU—on the switches covered by this manual is 9220 bytes for frames having an 802.1Q VLAN tag, and 9216 bytes for untagged frames.) For information on configuring the switch for jumbo frames, refer to “Configuring Jumbo Frame Operation” on page 13-28.

Table B-2. Maximum Frame Sizes for Mirroring

<table>
<thead>
<tr>
<th>Frame Type Configuration</th>
<th>Maximum Frame Size</th>
<th>VLAN Tag</th>
<th>Frame Mirrored to Local Port</th>
<th>Frame Mirrored to Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untagged</td>
<td></td>
<td></td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>Non-Jumbo (default config.)</td>
<td>1518</td>
<td>0</td>
<td>1518</td>
<td>1464</td>
</tr>
<tr>
<td>Jumbo^1 on All VLANs</td>
<td>9216</td>
<td>0</td>
<td>9216</td>
<td>9162</td>
</tr>
<tr>
<td>Jumbo^1 On All But Source VLAN</td>
<td>1518</td>
<td>0</td>
<td>n/a^2</td>
<td>1464</td>
</tr>
<tr>
<td>Tagged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Jumbo</td>
<td>1522</td>
<td>4</td>
<td>1522</td>
<td>1468</td>
</tr>
<tr>
<td>Jumbo^1 on All VLANs</td>
<td>9220</td>
<td>4</td>
<td>9218</td>
<td>9164</td>
</tr>
<tr>
<td>Jumbo^1 On All But Source VLAN</td>
<td>1522</td>
<td>4</td>
<td>n/a^2</td>
<td>1468</td>
</tr>
</tbody>
</table>

^1 Jumbo frames are allowed on ports operating at or above 1 Gbps.

^2 For local mirroring, a non-Jumbo configuration on the source VLAN dictates an MTU of 1518 bytes for untagged frames, and an MTU of 1522 for tagged frames, regardless of the Jumbo configuration on any other VLANs on the switch.
Effect of Downstream VLAN Tagging on Untagged, Mirrored Traffic

In a remote mirroring application, if mirrored traffic leaves the switch without 802.1Q VLAN tagging, but is forwarded through a downstream device that adds 802.1Q VLAN tags, then the MTU for untagged, mirrored frames leaving the source switch is reduced below the values shown in table B-2. That is, if the MTU on the path to the destination is 1522 bytes, then untagged, mirrored frames leaving the source switch cannot exceed 1518 bytes. If the MTU on the path to the destination is 9220 bytes, then untagged, mirrored frames leaving the source switch cannot exceed 9216 bytes.

Operating Notes

- **Mirroring Dropped Traffic**: Where an interface is configured to mirroring traffic to a destination, it does so regardless of whether the traffic is dropped while on the interface. For example, if an ACL configured on a VLAN with a *deny* ACE that eliminates packets from a Telnet application, the switch still mirrors the Telnet packets it receives on the interface and subsequently drops.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

- **Mirroring and Spanning Tree:** Mirroring is done regardless of the spanning-tree (STP) state of a port or trunk. This means, for example, that inbound traffic on a port blocked by STP can still be monitored for STP protocol packets during the STP setup phase.

- **Tagged and Untagged Frames:** For a frame entering or leaving the switch on a mirrored port, the mirrored copy retains the tagged or untagged state the original frame carried when it entered into or exited from the switch. (The tagged or untagged VLAN membership of ports in the path leading to the mirroring destination does not affect the tagged or untagged status of the mirrored copy itself.) Thus, if a tagged frame arrives on a mirrored port, the mirrored copy will also be tagged, regardless of the status of ports in the destination path. If a frame exits from the switch on a mirrored port that is a tagged member of a VLAN, then the mirrored copy will also be tagged for the same reason.

- **Effect of IGMP on Mirroring:** If both inbound and outbound mirroring is operating when IGMP is enabled on any VLAN, two copies of mirrored IGMP frames may appear at the mirroring destination.

- **Mirrored Traffic Not Encrypted:** Mirrored traffic undergoes IPv4 encapsulation, but mirrored, encapsulated traffic is not encrypted.

- **IPv4 Header Added:** The IPv4 encapsulation of mirrored traffic adds a 54-byte header to each mirrored frame. If a resulting frame exceeds the maximum MTU allowed in the network, it will be dropped. To reduce the number of dropped frames, enable jumbo frames in the mirroring path, including all intermediate switches and/or routers. (The maximum transmission unit—MTU—on the switch is 9220 bytes, which includes 4 bytes for the 802.1Q VLAN tag.) For more information, refer to “Maximum Supported Frame Size” on page B-69. To configure the switch for jumbo frames, refer to “Configuring Jumbo Frame Operation” on page 13-28.

- **Intercepted or Injected Traffic:** The mirroring feature does not protect against either mirrored traffic being intercepted or traffic being injected into a mirrored stream by an intermediate host.

- **Inbound IPv4-Encapsulated Frames Not Mirrored:** The switch does not mirror IPv4-encapsulated frames it receives on an interface. This prevents duplicate mirrored frames in configurations where the port connecting the switch to the network path for mirroring to a destination is also a port whose inbound or outbound traffic is being mirrored. For example, if traffic leaving the switch through ports B5, B6, and B7 is being mirrored through port B7 to a network analyzer, the mirrored frames from traffic on ports B5 and B6 will not be mirrored a second time as they pass through port B7.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

- **Switch Operation as Both Destination and Source:** A switch configured as remote destination switch can also be configured to mirror traffic to one of its own ports (local mirroring) or to a destination on another switch (remote mirroring).

- **Monitor Command Note:** If session 1 is already configured with a destination, you can execute `[no] vlan <vid> monitor` or `[no] interface <port> monitor` without mirroring criteria and a mirror session number. In this case, the switch automatically configures or removes mirroring for inbound and outbound traffic from the specified VLAN or port(s) to the destination configured for session 1.

- **Loss of Connectivity Suspends Remote Mirroring:** When a remote mirroring session is configured on a source switch, the switch sends an ARP request to the configured destination approximately every 60 seconds. If the source switch fails to receive the expected ARP response from the destination for that session, transmission of mirrored traffic for the session halts. However, because the source switch continues to send ARP requests for each configured remote session, link restoration or discovery of another path to the destination enables the source switch to resume transmitting the session’s mirrored traffic after a successful ARP/response cycle occurs. Note that if a link’s connectivity is repeatedly interrupted (“link toggling”), little or no mirrored traffic may be allowed for any sessions using that link. To verify the status of any mirroring session configured on the source switch, use `show monitor`.

Troubleshooting Mirroring

Mirrored traffic does not reach configured remote destination switch or remote exit port.

- For a given mirroring session, the `mirror` command parameters configured on the source switch for source IP address, source UDP port, and destination IP address must be identical to their counterparts in the `mirror endpoint` command configured on the destination switch.

- The configured exit port must not be a member of a trunk or mesh.

- If the destination for mirrored traffic is on a different VLAN than the source, routing must be correctly configured along the path from the source to the destination.

- On the destination switch for a given mirroring session, both the port on which the mirrored traffic enters the switch and the exit port must be members of the same VLAN.

- All links on the path from the source switch to the destination switch must be active.
Caution

A mirroring exit port should be connected only to a network analyzer, IDS, or other network edge device that has no connection to other network resources. Allowing a mirroring exit port connection to a network can result in serious network performance problems, and is strongly discouraged by ProCurve Networking.
Monitoring and Analyzing Switch Operation
Traffic Mirroring

— This page is intentionally unused. —