NonStop Customer Technical Update Conference Call

TCP/IP Review

Ron Weber
HP IP CLIM Development
February 4, 2010
Communication Products

- TCP/IP – Conventional TCP/IP
- TCP/IPv6
- Cluster I/O Protocols (CIP)
 - For IP CLIM
Communication Hardware

- TCP/IP and TCP/IPv6
 - Adapters
 - G4SA, FESA, E4SA, CCSA, TRSA
 - GESA, ATM3SA (no longer available)
 - SWAN, SWAN2 attachment

- CIP
 - CLIMs
 - 5 Copper
 - 3 Copper / 2 Fiber
 - TELCO
 - SWAN, SWAN2 attachment
Ethernet Port

• Adapter
 – SUBNET -> LIF -> PIF
 • SN1 -> L0153A -> E0153.0.A
 • SN2 -> L11123D -> G11123.0.D

• CLIM
 – Interface
 • N1002581.eth1
 • N1002582.bond0
TCP/IP Stack

- **TCP/IP**
 - TCP/IP Process
 - resides on one CPU at a time (backup process)
- **TCP/IPv6**
 - LNP
 - parallel, resides on all CPUs
 - TCP6SAM
 - handles socket opens and closes
- **CIP**
 - PROVIDER
 - parallel, resides on all CPUs
 - partially offloaded to CLIM
 - CIPSAM
 - handles socket opens and closes
TCP/IP (Conventional)
TCP/IPv6

LNP (Logical Network Partition) = ZTCP6DLL + TCP6MON

CPU 0

TCP6SAM
$ZTC0

App

LNP (ZTC0)

G4SA

CPU 1

App

LNP (ZTC0)

Data

Open/Close
CIP

PROV = ZCIPDLL + CIPMON

Open/Close

Data
Granularity of Ethernet Ports per stack

• TCP/IP
 – one or more physical interfaces (PIFs) per stack
 – one or more stacks per PIF

• TCP/IPv6
 – one or more PIFs per stack

• CIP
 – one or more CLIMs (5 ports) per stack
Failover

• TCP/IP
 – Backup TCP/IP process
 • lose connections
 • UDP and Listening sockets survive if using Fault Tolerant sockets

• TCP/IPv6
 – seamless PIF to PIF failover

• CIP
 – Bonded
 • seamless interface to interface failover (same CLIM)
 – failover pair
 • interface to interface failover (different CLIMs)
 • lose connections
 • UDP and Listening sockets survive
Common Functionality

- TCP/IP IPv4
- UDP IPv4
- SWAN connectivity
TCP/IP functionality

• Fault Tolerant Sockets
• Remote Sockets
• TCP/IP over ATM, Token Ring, or X.25
TCP/IPv6 functionality

- TCP/IP IPv6
- UDP IPv6
- Round Robin Sockets
 - one per CPU
CIP functionality

- TCP/IP IPv6
- UDP IPv6
- SCTP IPv4 and IPv6
- Round Robin Sockets
 - many per CPU
CIP Differences

- Management is a combination of SCF and CLIMCMD
- TCPDUMP and WIRESHARK for IP level tracing
- I/O Essentials for seamless management
- Software update via NSC, not SUT based
CIP need to know

- Restriction of 192.168.*** on Blades
- More complex routing setup required
- TELSERV T9553AEP – bind to IP Address
- LISTNER T8602AAY – bind to IP Address
- SWAN BRcvPort
IOAME vs. CLIM

- **IOAME**
 - Fault Tolerant Sockets
 - Remote Sockets
 - TCP/IP ATM, TR, or X.25
 - SNA over ethernet (SLSA)
 - TCP/IPv6 Failover

- **CLIM**
 - Performance. < CPU utilization and > throughput
 - IPSec
 - SCTP
Technology for better business outcomes
NonStop Customer Technical Update Conference Call

IP CLIM Failover

Ron Weber
HP IP CLIM Development
February 4, 2010
IP CLIM Failover

- Two Modes of Failover
 - Intra-CLIM
 - Failover between two or more interface in the SAME CLIM
 - Bonding
 - CLIM-to-CLIM failover
 - Failover between two interface in DIFFERENT CLIMs
 - Failover Pair
IP CLIM Failover - Bonding

- Bonding
 - Configured with “climconfig (slave)interface”
 - leverages Linux Bonding mode
 - Bonds two or more physical interfaces into one logical interface
 - Seamless failover when link pulse is lost
 - Bonding Modes – applies to all bonded interfaces
 - 1 – active-backup
 - 5 – balance-tlb (Adaptive Transmit Load Balancing)
 - 6 – balance-alb (Adaptive Load Balancing)
 - Receive balance for IPv4 only
 - Use ARP to balance receive traffic to multiple MAC addresses
 - Primary Slave configuration (J06.09)
IP CLIM Failover - Bonding

- Bonded Interface MAC address
 - MAC address of first “functional” configured slave used in all modes
 - NIC and driver functional (link pulse is optional)
 - Used for IPv6 Link Local and Dynamic Addresses
 - Used for ARP replies
 - MAC address remains unchanged for the life of the activation
 - Moved from slave to slave as needed by link pulse failures
 - MAC address of other slaves used in bondmodes 5 and 6
 - Except for ARP replies in bondmode 5
 - MAC address of other slaves used in ARP replies to balance receive traffic for bondmode 6
 - Hashed on source address
Bonding

Provider ZTC0

IPA: 10.2.100.11
IP CLIM Failover – Failover Pair

• CLIM-to-CLIM failover
 – Configured with “climconfig failover”
 – Manage by NonStop Host (CIPMAN)
 – Occurs when an interface (all slaves of a bond) or CLIM fails
 – Interface Resources (IP Address, Routes) moved from failed interface to failover interface on the failover CLIM
 – TCP/IP connections are lost and reset. Similar to losing the CPU hosting the TCP/IP process on Conventional TCP/IP
 • Clients must reconnect
 – UDP and TCP Listening sockets are migrated to the new CLIM
 • Servers continue uninterrupted
IP CLIM Failover – Failover Pair

• CLIM-to-CLIM failover
 – Requires operator intervention to restore the interface to its home CLIM (SCF SWITCH)
 – Routing considerations (Sabu to discuss next week)
 • default routes
 • multiple routes to destination with differing gateways
Failover Pair

Provider ZTC0

IPA: 10.2.100.11

IPA: 10.2.100.12
Failover Pair with Bond

Provider ZTC0

IPA: 10.2.100.11
IPA: 10.2.100.12
Failover Pair – Maximum Fault Tolerance

Provider ZTC0

Failover Pair

IPA: 10.2.100.11
IPA: 10.2.100.12
Technology for better business outcomes