Managing Change in the Call Center after Enterprise Routing Implementation
Managing Change in the Call Center after Enterprise Routing Implementation

Introduction

Customers with a new Enterprise Routing solution for their help desks, such as Cisco’s Intelligent Contact Management (ICM) system, frequently request the validation of ICM route responses. Problems with routing validity occurring shortly after implementation can indicate problems as diverse as changes to local ACD programming to problems with the ICM scripting.

In order to save time and costs, analyze the reasons for the validation request before launching a full-scale validation exercise. Route responses often are not the key issues when the system doesn’t perform as expected. Enterprise routing systems are designed to normalize information from different enterprise call centers, allowing each agent at each site to be treated as a similar resource. This approach turns the traditional “silo” architecture on its ear and introduces a set of variables to an individual call center’s staffing and traffic planning needs that are difficult if not impossible to accommodate using traditional call center management methodologies.

An in-depth discussion follows, intended to encourage prospective enterprise routing customers to examine and modify how the call center management function works before implementation to ensure a smooth transition to the new technology.

Traditional call volume and routing management

In most call center environments, traditional “silo” routing is standard practice. Upon call arrival at a call center site, the treatment the caller receives is administered and determined locally, under direct control of the local center director or manager. This silo architecture is entrenched, comfortable, and fairly straightforward to manage, because the volume of calls that a particular site will receive is not directly and immediately dependent on agent availability at other enterprise call centers. Even in the case of network flat allocation among sites, or percentage allocation among sites, agent availability at other peer call centers is not a consideration during the active routing process.

Historical call volume information from local ACD databases or carrier reports is normally used to map anticipated inbound call volume. Call center managers can staff against these plans without consideration of another center’s efforts along the same path. Network allocation is programmed based upon the staffing numbers supplied by each peer call center and is expected to remain static until it is evaluated and changed by committee.
Enterprise Routing with ICM

Cisco's ICM is designed to normalize information from different enterprise call centers, such that each agent at each site is treated as a similar resource. With this architecture model, the ICM can examine resource availability at all connected call center sites. Regardless of the location of the initial call termination, the ICM can consider all similarly skilled agents at all sites and choose a resource for the call without traditional physical site considerations. All agents within the enterprise who share a skill are “virtualized” into a single agent pool from which an agent can be selected.

ICM Enterprise routing turns the “silo” architecture on its ear, and introduces a set of variables to an individual call center’s staffing and traffic planning needs that most call center directors cannot easily accommodate. Call arrival patterns to the individual center are now dependent upon how the other enterprise call centers are staffed and how well they are performing on a call-by-call basis. The rules of choosing a destination call center are now no longer simple and fixed, nor are they independent of individual call center performance.

With such a basic, fundamental shift in how traffic arrives at any given silo call center and how those arrival patterns can be affected by other participating silo call centers, it is absolutely imperative that Key Performance Indicator (KPI) requirements for silo call centers participating in enterprise routing be altered. Further, a peer management model that allows for all participating silo centers to collectively manage enterprise routed call volume must be implemented.

Consider what typically happens when this need is not addressed:

This inability to directly manage call arrival and treatment is normally met with fierce resistance, because individual center performance is traditionally measured and incented by local KPIs instead of enterprise KPIs. Even when incentives are shifted from an individual call center focus to an enterprise focus, the enterprise group can only perform as well as the least efficient call center in the group. Since traditional roles and responsibilities for call center management do not address this new paradigm, a comparatively poor-performing peer call center can affect KPIs for the enterprise group with no real (or perceived) remedy for the other peer center directors.

So, the (mis)-management of a peer call center directly affects other managers’ own call centers, both in KPIs and in traditional tangible incentives (bonuses, pay-for-performance, budgeting, and management recognition). Without remedy or recourse, a center manager will become frustrated over time, and hostile to the enterprise routing solution…often resorting to a “bunker” mindset in order to preserve his or her job and reputation.
When this happens, enterprise routing reports from the ICM solution are often ignored in favor of more traditional ACD statistics generated locally, and the enterprise routing solution is typically blamed for any misstep in the local KPI targets that the call center must still meet.

Further, the existence of these external influences (and the fact that they directly affect individual center KPI results) creates an “it’s not my problem” attitude. Local KPI information is often used to justify management apathy in arriving at an enterprise-favorable problem resolution, leading managers to claim: “My center’s ASA for this client was in line with existing company mandates, but the other centers did so poorly, the average was too low and we missed the mark. The other centers screwed up, not me.”

For centers with less favorable KPI information, managers may complain that: “I missed my targets, but look at all the calls that I got as compared to these other sites. I was even getting calls from the ICM when the other site had available agents! It doesn’t work. That’s not my problem.”

What does this all mean?

Clearly, this is a management stalemate and cries out for a change to enable (or require) local call center managers to work together to manage enterprise call volume cooperatively. If they remain tied to local KPIs only, the enterprise goals will always be at cross-purposes to the local agenda.

This “team” or group measurement is a recent incentive innovation in traditional business management. It enjoys more widespread adoption in businesses that want to move from an individual pay-for-performance environment in the hopes of realizing short- and long-term efficiency improvement.

A good example of the “team” approach is the one used in warehouse order picking and fulfillment. This industry typically now works on an order selection team approach where groups of employees will select and stage customer orders and are incented for speed and accuracy across the team, instead of individually. The most efficient and accurate teams are incented on a scale as compared to all selection teams. This top-performing group then gets first “pick” of the selection runs during its shift. Individual teams monitor their own performance, and make sure that an individual does not affect the team’s selection rate for that period... in effect, empowering the team to ensure top performance.

Since the TEAM is incented for performance and there are no individual requirements for order picking rate, accuracy, and the like, it is against the team member’s best interest (and their wallet) to act in their own interest. If this model were implemented with concurrent individual-based goals, the model would not work.

To date, this model is rarely used in a call
Managing Change in the Call Center after Enterprise Routing Implementation

center environment. Typically, after the implementation of an enterprise routing solution like ICM, a lack of strong executive leadership and no change in how call center director performance is measured and incented leads to an inherent mistrust in the enterprise routing solution. In turn, this manifests itself in requests from enterprise routing clients to validate and re-validate the solution’s routing decisions.

Normally, this occurs because an individual center, focused on silo-based performance metrics, does not meet a particular KPI goal. Since individual KPI goals are directly affected by KPI results at other enterprise centers, and that performance is not something that a peer center director can directly control, the peer center director will concentrate on what s/he can control: their own center. Since the center is staffed properly according to the tools the center director has always used, and the KPI measurements fell short of target after the enterprise routing solution was implemented, then there must be something wrong with the solution.

While it is possible with an enterprise routing solution to restrict the measurement of certain KPIs to a particular peer call center, this ability does not address the overarching issue of improving enterprise KPIs. By going down the path of implementing an enterprise routing solution and then continuing with an incentive or performance measurement model that examines individual center performance, an enterprise will be undermining the entire enterprise routing effort.

Real-world example of a poor enterprise-routing implementation and the consequences.

A call center outsourcer implemented the Cisco Intelligent Contact Management system for use with a particular client. The business need for the solution was clear, as the outsourcer had two large problems to solve: first, a lack of agent capacity at a single call center, and second, an agent distribution that included dissimilar ACD switching platforms. This second issue also complicated CTI, as the database housing caller information was centralized, and the CTI delivery mechanism would be different for each ACD. The Cisco ICM solution solves these problems.

During the implementation, the client’s historical call volume figures were provided to the outsourcer in order to determine the number of agents necessary to support that call volume. This figure was compared to the number of available/idle staff at the outsourcer’s call center sites, and individual destination sites were chosen based on each center’s then-current utilization KPIs.

The ICM was configured with an enterprise routing script that accepted routing inquiries directly from a front-end VRU array. After call classification, the VRU queried the ICM for rout-
ing instructions. The routing script considered the agent groups at all participating sites, and made a routing decision based first on the longest available agent. If no agents were available at any site, the ICM performed an expected delay calculation; the site with the shortest expected delay for the agent group received the call.

The script was validated with small test agent groups at each site, and performed flawlessly. The system was ready for go-live, and was activated on the scheduled date.

Immediately at launch, the participating centers sounded a general alarm. Call volume was approximately double what had been staffed, and each center was getting hammered with more call volume than they could handle.

Additional staff were quickly located, and additional programming was implemented within the ICM to “peel off” a percentage of the inbound call volume and directly transfer it to call centers that were not set up with any ICM equipment. This solved the immediate problem with the ICM centers, until they could be “staffed up” to the actual volume being received. In a perfect world, this would be the end of the story.

However, rather than accepting a staffing shortfall as the problem, the participating centers insisted that the ICM was making poor routing decisions, and took matters into their own hands in order to preserve the KPI measurements on which their centers were evaluated.

As the ICM Administrator was working to allow the ICM to divert call volume to other temporary call center destinations, the individual centers programmed their own ACD-specific call handling thresholds, and created silo routing logic that automatically transferred calls out of their centers to other call centers upon reaching a particular queue size or ASA threshold. Some of these transfer destinations were equipped with ICM and some without.

In some very memorable cases, after the ICM made a routing decision for call center A and moved the call there, A transferred the call to call center B, another ICM-equipped center. In this particular case, the ICM couldn’t recover, as the intended destination for the call was not where the call eventually landed. CTI data delivery was compromised and this round-robin routing tended to make load balancing between the participating centers much more volatile (a “pendulum” or oscillating pattern over time).

To make matters worse for some call types, center B programmed their ACD routing to transfer calls back to center A after reaching a certain volume threshold. These transfers “kited” to the point where all inbound trunking (ATB) to one site was blocked with trunk-to-trunk transfers, all for a single inbound call.

The ICM was programmed to check for an all-trunks-busy condition prior to making a route selection, so after all trunks were blocked, that
Managing Change in the Call Center after Enterprise Routing Implementation

call center site was no longer a viable target. The next inbound call was routed to a center that had available trunks, but a very poor expected delay figure.

After the inbound caller eventually abandoned, all of the “tromboned” trunk connections related to that individual call would release, and the ICM saw that particular center as a viable routing target. All of the agents at the site would be idle, since all inbound trunking was blocked with stacked trombone calls.

(Another interesting development: as part of this general melee, the site with the constant ATB condition made a request to the corporate provisioning group to purchase additional voice T1 capacity to handle the fictitious volume generated by their own programming. After the tromboning problem was corrected, the trunks were no longer needed... but they had already been provisioned, and the site was contractually obligated to complete the installation. This site had a fairly lengthy backhaul to the nearest LD carrier point of presence, so the T1s ordered were not cheap. Perhaps there is some justice in telecom after all...)

During the ATB condition, the ICM showed agents available/idle at the “blocked” site. These agents were available, but could not receive calls because of the network blockage. As a result, the validity of the entire ICM solution was called into question, because the ICM was not routing calls to a site that had available agents, and was instead routing them to a site that had a sizable queue.

One other center, on discovering that these local transfers were not completing because of the ATB condition, diverted the calls to a company call center in Canada, at switched-line costs. This call center, on receiving the unwanted volume, transferred the calls back to the original inbound toll-free number... and the whole process started right from the beginning. Bear in mind that call voice quality deteriorates with each additional trunk-to-trunk transfer... by this time, the VRU prompting simply couldn’t be heard, and the caller would abandon after hearing silence at the VRU.

One ICM-equipped call center stayed out of the fray, because it was located in another country, and the other domestic centers could not transfer their calls there. Based on the routing logic programmed at the ICM, it could only choose this single center, up until the time that all of its trunks were occupied with client calls. As a result, the average time-to-answer KPI at this foreign call center was poor when compared with the other ICM-enabled sites that were transferring calls willy-nilly. Even though this site did not program any destructive call routing, their performance evaluation suffered by comparison with the peer centers. In fact, their KPI numbers looked far better, because the ATB condition forced agents to be idle. In the aggregate, the average hold time and utiliza-
tion numbers for the call centers employing diversion routing were fantastic!

The aggregate numbers for all of the call center sites, as reported from the ICM system, in no way reflected the actual customer experience. The customers vehemently complained directly to the client, and the call center managers (at least publicly) were at a loss to explain why.

Again, since the ICM numbers didn’t correlate to the customer experience, the ICM must therefore have been at fault. Under intense pressure from sales and from the local call centers to “fix” the ICM, the administrator was forced to change all of the routing logic to manual percent-allocate routing, which was manually changed at half-hour intervals based on hand-written staffing projections for each time period.

While performing these on-the-fly modifications, the administrator also took it upon himself to prove that the problems with call routing for this client were all the direct result of self-serving diversion routing at each local call center.

After successfully proving his case, the ICM administrator was directed to remove all of the back-door transfer routing from the ICM call centers, and let the ICM do its job. The entire situation, from start to finish, took over four months to resolve...and required frequent re-examination to ensure that destructive local routing had not been re-implemented to further an individual call center’s KPI agenda.

Summary

Problems with routing validity that occur shortly after the implementation of an enterprise routing system like the Cisco Intelligent Contact Management system are often clear indications that existing call center management methodologies may not be appropriate for the new environments. In fact, this is usually the cause of the problem, rather than some difficulty or weakness in the ICM itself.

Before going down the garden path and simply validating the ICM’s routing decisions, it is very important to step back and determine what has happened in the enterprise to drive the request or demand for routing validation.

It may be that the ICM scripting is programmed incorrectly, or that there is a bug in the software itself. It is far more likely that local ACD programming has changed and ICM programming has not been altered to reflect that change. Before making that investigation, however, be cognizant of the dynamics behind the local site programming changes, since they are an important part of fixing the problem. To avoid the problem entirely change how the call center management function works before implementation to ensure smooth transition to the ICM.